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Abstract

For a given nonderogatory matrix A, formulas are given for functions of A in terms
of Krylov matrices of A. Relations between the coefficients of a polynomial of A and the
generating vector of a Krylov matrix of A are provided. With the formulas, linear trans-
formations between Krylov matrices and functions of A are introduced, and associated
algebraic properties are derived. Hessenberg reduction forms are revisited equipped with
appropriate inner products and related properties and matrix factorizations are given.
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1 Introduction

Let A ∈ Cn,n. The Krylov matrix of A generated by a vector b ∈ Cn is given by[
b Ab . . . An−1b

]
∈ Cn,n.

Given a scalar function f(t) that is well defined on the spectrum of A, one defines a matrix
f(A) ∈ Cn,n, which is usually called a function of A, e.g., [10, 11].

Both functions of a matrix and Krylov matrices play a fundamental role in matrix compu-
tations. They are key tools in understanding and developing numerical methods for solving
eigenvalue problems and systems of linear equations, including the QR algorithm and Krylov
subspace methods, e.g., [8, 9, 22]. Functions of a matrix arise from a variety of applica-
tions. The development of numerical algorithms is still a challenging topic. See the recently
published book [10] for details.

In this paper we investigate the Krylov matrices and functions of a matrix. We focus on
the situation where the associated matrix A is nonderogatory, i.e., the geometric multiplicity
of every eigenvalue of A is one. We provide formulas to express a function of A in terms of
Krylov matrices and vise versa, based on a simple observation. We use the formulas to study
the relations and properties of these two objects.

Krylov matrices and functions of a matrix have been studied extensively in the past several
decades. Still, it seems that their behaviors have not been fully understood. The goal of this
study is to use a new angle to interpret the existing properties and provide new insight that
may be potentially useful for the development of numerical methods.
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The paper is organized as follows. In Section 2 we give definitions of functions of a matrix
and Krylov matrices, and some basic properties that are necessary for deriving main results.
In Section 3 we show relations between functions of a matrix and Krylov matrices by providing
explicit formulas. In Section 4 we interpret the relations in terms of linear transformations
and subspaces. In Section 5 we study the Hessenberg reduction forms, and derive some related
properties and matrix factorizations. In Section 6 we give conclusions.

The spectrum of A is denoted by λ(A). || · || stands for both the Euclidian norm of a
vector and the spectral norm of a matrix. In is the n × n identity matrix, and ej is the jth
column of In. Nr is the r× r nilpotent matrix with 1 on the super diagonal and 0 elsewhere,
and Nr(λ) = λIr + Nr. A square matrix is called unreduced upper Hessenberg if it is upper
Hessenberg with nonzero subdiagonal elements. Pm denotes the space of the polynomials
with degree no greater than m.

2 Functions of a matrix and Krylov matrices

In this paper we only consider the functions defined as follows. Let A be a square matrix and
have the Jordan canonical form

Z−1AZ = diag(Nr1,1(λ1), . . . , Nr1,s1
(λ1), . . . , Nrη,1(λη), . . . , Nrη,sη (λη))

where λ1, . . . , λη ∈ λ(A) are distinct. Let f(t) be a scalar function. If for each λi, f(λi) and
the derivatives f (k)(λi) (k = 1, . . . ,max1≤j≤si ri,j − 1) are defined, we define

f(A) := Z diag(f(Nr1,1(λ1)), . . . , f(Nr1,s1
(λ1)), . . . , f(Nrη,1(λη)), . . . , f(Nrη,sη (λη)))Z−1,

where

f(Nri,j (λi)) =


f(λi)

f ′(λi)
1! . . . f (ri,j−1)(λi)

(ri,j−1)!

. . . . . .
...

. . . f ′(λi)
1!

f(λi)

 .
For a scalar polynomial p(t) =

∑m
j=0 αjt

j ∈ Pm we simply have p(A) =
∑m

j=0 αjA
j .

We provide below some basic properties of functions of a matrix.

Proposition 2.1 ([10, 11]) Suppose that µ is the degree of the minimal polynomial of A.
For any function f(t) such that f(A) is defined, there exists a unique polynomial p(t) ∈ Pµ−1

such that
f(A) = p(A).

The unique polynomial p(t) can be constructed by the Lagrange-Hermite interpolation
with p(k)(λi) = f (k)(λi) for k = 0, 1, . . . ,max1≤j≤si ri,j − 1, and i = 1, 2, . . . , η.

Proposition 2.2 ([10, 11])

(i) Af(A) = f(A)A.

(ii) f(X−1AX) = X−1f(A)X.
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The Schur-Parlett algorithm for computing f(A) is based on these two properties. See [16,
17, 12, 3] and [10, Ch. 4, 9]. The properties will be used frequently in the rest of the paper.

Suppose that A ∈ Cn,n and b ∈ Cn. We define the Krylov matrix

Kn,m(A, b) =
[
b Ab . . . Am−1b

]
∈ Cn,m.

When m = n, we will simply use the notation Kn(A, b) or K(A, b).
A polynomial with degree no greater than m − 1 is characterized uniquely by its m

coefficients. We use the following polynomial notation to emphasize the coefficients.

Definition 2.3 For x = [x1, . . . , xm]T ∈ Cm,

p(t;x) := x1 + x2t+ . . .+ xmt
m−1 ∈ Pm−1.

It is obvious that
p(A;x)b = Kn,m(A, b)x, x ∈ Cm. (1)

So Kn,m(A, b)x = 0 if and only if p(A;x)b = 0. The minimal polynomial of b with respect to
A is a nonzero polynomial p(t) of the lowest degree such that p(A)b = 0, [22, pp. 36 - 37].
Let ν be the degree of this minimal polynomial p(t). Then based on (1),

rankKn,m(A, b) = min{m, ν}.

More precisely, b, Ab, . . . , Aν−1b are linearly independent, and for any k ≥ ν, Akb can be
expressed as a linear combination of b, Ab, . . . , Aν−1b, [19, Ch. VI].

Proposition 2.4 Suppose rankKn,m(A, b) = r. Then there exists a nonsingular matrix X =
[X1, X2] ∈ Cn,n with X1 ∈ Cn,r and rangeX1 = rangeKn,r(A, b) such that

Kn,m(A, b) = X1

[
R11 R12

]
, (2)

where R11 ∈ Cr,r is nonsingular, and

X−1AX =
[
A11 A12

0 A22

]
, X−1b =

[
b1
0

]
(3)

with A11 ∈ Cr,r and b1 ∈ Cr.
Moreover, R11 is upper triangular if and only if A11 is unreduced upper Hessenberg and

X−1b = γe1.

Proof. It is trivial when b = 0. So we only consider the case when b 6= 0.
Since rankKn,m(A, b) = r, based on the above arguments,

Kn,m(A, b) = Kn,r(A, b)
[
Ir T

]
,

for some T ∈ Cr,m−r. If X1 ∈ Cn,r satisfies rangeX1 = rangeKn,r(A, b), then X1 =
Kn,r(A, b)Z for some nonsingular matrix Z ∈ Cr,r. So we have (2) with[

R11 R12

]
= Z−1

[
Ir T

]
.
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Clearly, b = X1b1 with b1 = Z−1e1. BecauseArb is a linear combination of b, Ab, . . . , Ar−1b,
we have

AKn,r(A, b) = Kn,r(A, b)Cr, Cr =


0 c1,r

1
. . . c2,r
. . . . . .

...
1 cr,r

 .
Then

AX1 = X1A11, A11 = Z−1CrZ.

So for a nonsingular matrix X = [X1, X2] we have (3).
Suppose that R11 in (2) is upper triangular. Then Z = R−1

11 is also upper triangular.
So A11 is unreduced upper Hessenberg. Because b1 = Z−1e1 = R11e1 = r11e1, we have
X−1b = r11e1 =: γe1.

Conversely, if A11 is unreduced upper Hessenberg and X−1b = γe1, using (3),

Kn,r(A, b) = X

(
γ

[
e1 A11e1 . . . Ar−1

11 e1
0 0 . . . 0

])
=:
[
X1 X2

] [ R11

0

]
= X1R11,

and it is straightforward to show that R11 is nonsingular and upper triangular.
We now turn to a square Krylov matrix K(A, b) (m = n). Suppose that the characteristic

polynomial of A is
det(λI −A) =: λn − cnλn−1 − . . .− c2λ− c1.

We define the companion matrix1 of A as

C =


0 c1

1
. . . c2
. . . . . .

...
1 cn

 . (4)

Proposition 2.5 AX = XC if and only if X = K(A, b) for some b ∈ Cn.

Proof. For sufficiency, it is straightforward to show AK(A, b) = K(A, b)C for any b ∈ Cn,
by using the Cayley-Hamilton Theorem.

For necessity, X = K(A, b) follows simply by comparing the columns of the matrices AX
and XC with b = Xe1.

The rank of K(A, b) is ν, the degree of the minimal polynomial of b with respect to A,
which is no greater than the degree of the minimal polynomial of A. In order for K(A, b)
to be nonsingular, it is necessary for the minimal polynomial of A to be the same as its
characteristic polynomial, or equivalently, A has to be nonderogatory, i.e., the geometric
multiplicity for every eigenvalue is one [6, 7]. Still, the nonsingularity of K(A, b) depends on
the vector b. There are numerous equivalence conditions based on canonical forms [1] and the
controllability from linear system theory [13, 18, 4, 5]. We list a few of them in the following
proposition.

Proposition 2.6 Suppose A ∈ Cn,n and b ∈ Cn. The following statements are equivalent.
1Usually the transpose of C is also called a companion matrix of A. In this paper we always refer the

companion matrix of A to C.
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(a) K(A, b) is nonsingular.

(b) y∗b 6= 0 for any vector y ∈ Cn satisfying y∗A = λy∗ with some λ ∈ C.

(c) rank
[
A− λI b

]
= n for all λ ∈ C.

(d) b 6= 0 and there exists a nonsingular (or unitary) X such that X−1b = γe1 and X−1AX
is unreduced upper Hessenberg.

(e) The only polynomial p(t;x) ∈ Pn−1 that satisfies

p(A;x)b = 0

is p(t; 0) ≡ 0.

Proof. (a), (b), (c) are just three equivalence conditions for (A, b) to be controllable
[13, 18, 4, 5]. The equivalence between (a) and (d) is from Proposition 2.4. The equivalence
between (a) and (e) can be shown by using (1).

Generically, a square matrix A is nonderogatory. When A is nonderogatory, the left eigen-
vector space of each eigenvalue is one-dimensional. So the set of b that satisfies Proposition 2.6
(b) is dense in Cn, and the Krylov matrix K(A, b) is generically nonsingular.

When A is derogatory, it is impossible for A to be similar to its companion matrix. Instead,
A has a Frobenius form ([22, pp. 15 - 16]),

X−1AX = diag(C1, . . . , Cq),

where C1, . . . , Cq are in a companion matrix form, and the characteristic polynomial of each
Cj divides the characteristic polynomials of C1, . . . , Cj−1. Suppose the size of Cj is nj × nj ,
for j = 1, . . . , q. Then the similarity matrix X can be expressed as

X = [Kn,n1(A, b1); . . . ,Kn,nq(A, bq)],

for some b1, . . . , bq ∈ Cn, which generalizes the result in Proposition 2.5. In this paper,
however, we focus on the nonderogatory case only, although some results can be generalized
to the derogatory case by using the above observation.

3 Relations between Krylov matrices and functions of a ma-
trix

The formulation of a function of A in terms of Krylov matrices of A is based on the following
simple observation. For any A ∈ Cn,n and and b ∈ Cn, using the fact f(A)A = Af(A)
(Proposition 2.2) we have

f(A)K(A, b) = K(A, d), d = f(A)b. (5)

We first use this fact to show relations between polynomials p(A;x) and Krylov matrices.

Theorem 3.1 For any x ∈ Cn,

K(A, d) = p(A;x)K(A, b), d = K(A, b)x, (6)
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If K(A, b) is nonsingular (so A is necessarily nonderogatory), then for any d ∈ Cn,

p(A;x) = K(A, d)K(A, b)−1, x = K(A, b)−1d, (7)

and in this case (6) can be also expressed as

K(A, d) = K(A, b)p(C;x), d = K(A, b)x, (8)

where C is the companion matrix of A.

Proof. The formula (6) follows simply from (5) with f(t) = p(t;x), and (1).
The formula (7) is simply from (6) and the nonsingularity of K(A, b). (8) follows from

p(A;x)K(A, b) = p(K(A, b)CK(A, b)−1;x)K(A, b) = K(A, b)p(C;x),

based on Proposition 2.2 (ii) and Proposition 2.5.
We now consider a general function f(t) and we have to following results.

Theorem 3.2 Suppose that K(A, b) is nonsingular and C is the companion matrix of A. Let
f(t) be a scalar function and τ ∈ C such that f(τA) is defined. Then

f(τA) = K(A, d(τ))K(A, b)−1, d(τ) = f(τA)b, (9)

and
f(τA) = p(A;x(τ)), x(τ) = K(A, b)−1f(τA)b = f(τC)e1. (10)

Also, when τ 6= 0,

f(τA) = p(τA; y(τ)), y(τ) = K(τA, b)−1f(τA)b = f(C(τ))e1, (11)

where

C(τ) =


0 τnc1

1
. . . τn−1c2
. . . . . .

...
1 τcn

 (12)

is the companion matrix of τA.

Proof. Because f(τA) and Ai (i = 0, . . . , n− 1) commute,

f(τA) = f(τA)K(A, b)K(A, b)−1 = K(A, f(τA)b)K(A, b)−1 = K(A, d(τ))K(A, b)−1.

By (9) and (7),
f(τA) = K(A, d(τ))K(A, b)−1 = p(A;x(τ)),

where
x(τ) = K(A, b)−1d(τ) = K(A, b)−1f(τA)b = f(τC)e1.

For (11), define D = diag(1, τ, . . . , τn−1), which is nonsingular. From the simple relation

K(τA, b) = K(A, b)D, (13)
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K(τA, b) is also nonsingular. By applying (5) with A replaced by τA, we get

f(τA) = K(τA, d(τ))K(τA, b)−1, d(τ) = f(τA)b.

Again, using (7) we have
f(τA) = p(τA; y(τ)),

where
y(τ) = K(τA, b)−1d(τ) = K(τA, b)−1f(τA)b = f(C(τ))e1,

and C(τ) is the companion matrix of τA.
It remains to derive the formula for C(τ). By using (13) we have

C(τ) = K(τA, b)−1(τA)K(τA, b) = D−1K(A, b)−1(τA)K(A, b)D = τD−1CD,

which has the form (12).
Note that when τ = 0, (11) may not hold, since on the left-hand side it only requires f(0)

to be defined while on the right-hand side f(C(0)) has to be defined. Even if (11) holds, it
usually doesn’t give a polynomial corresponding to f(0) with minimal degree. This is because
y(0) = f(C(0))e1 may not be a scalar multiple of e1, resulting a polynomial p(t; y(0)) with
degree greater than 0. Note also that when τ = 1, (10) and (11) are identical.

The following results are directly from Theorem 3.2.

Theorem 3.3 Suppose that K(A, b) is nonsingular and C is the companion matrix of A. Let
f(t) be a scalar function such that f(A) is defined. Then

f(A) = K(A, d)K(A, b)−1, d = f(A)b, (14)

and
f(A) = p(A;x), x = K(A, b)−1f(A)b = f(C)e1. (15)

If in addition f(A) is nonsingular, then

[f(A)]−1 = p(A; y), y = K(A, d)−1b. (16)

Proof. The first part is from Theorem 3.2 with τ = 1. So we only need to prove (16).
If f(A) is nonsingular, then from (14), K(A, d) is also nonsingular. So [f(A)]−1 =

K(A, b)K(A, d)−1, and (16) is from (15).
Formula (15) not only restates the result given in Proposition 2.1 in the nonderogatory

case, i.e., f(A) ∈ Pn−1(A), but also provides an explicit formula for the polynomial p(t;x).
Formula (16) shows that the same properties hold for the inverse of f(A).

Formula (14) holds true for all f(A). When f(t) is a rational function, we have the
following additional formula.

Theorem 3.4 Suppose that K(A, b) is nonsingular and r(t) = p(t)/q(t) is a rational function
with q(A) nonsingular. Then

r(A) = K(A, d1)K(A, d2)−1, d1 = p(A)b, d2 = q(A)b, (17)

and
r(A) = p(A;x), x = K(A, d2)−1p(A)b. (18)
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Proof. Since K(A, b) is nonsingular,

r(A) = p(A)q(A)−1 = p(A)K(A, b)K(A, b)−1q(A)−1 = K(A, p(A)b)K(A, q(A)b)−1,

which gives (17). The relations in (18) are from (17) and (7).

Remark 3.5 Computing a Krylov matrix K(A, b) has the same cost of a matrix-matrix
multiplication. So if f(A)b is available, computing f(A) with (14) or (17) requires two matrix-
matrix multiplications and one matrix equation solving.

In general, computing the vector f(A)b is far from trivial, but it is straightforward when
f(t) is a polynomial or a rational function. So this approach may have advantages in symbolic
or exact arithmetic computations. For numerical computations, however, it is well-known that
a Krylov matrix is usually ill-conditioned. A method that uses (14) or (17) directly may be
numerically unstable.

The above formulations may be used to derive some interesting results. For instance, let
f(t) = et. Then from Theorem 3.2, we have

eτA = K(A, d(τ))K(A, b)−1, d(τ) = eτAb.

This shows that the fundamental matrix of the linear system dx/dτ = Ax is completely
determined by the solution to the initial value problem dx/dτ = Ax, x(0) = b.

In the end of this section, we consider the case where Krylov matrices are slightly gener-
alized.

Let
gj(t) = p(t; γj) ∈ Pn−1, γj ∈ Cn,

for j = 1, . . . , n. Define

G(A, b) =
[
g1(A)b g2(A)b . . . gn(A)b

]
. (19)

By using (1),
gj(A)b = K(A, b)γj ,

for j = 1, . . . , n. Define
Γ =

[
γ1 . . . γn

]
.

Then
G(A, b) = K(A, b)Γ, (20)

Clearly for any Γ ∈ Cn,n a matrix G(A, b) can be generated by using (20). When K(A, b) is
nonsingular, it defines an isomorphism from Γ toG(A, b). Note also thatG(A, b) is nonsingular
if and only if both K(A, b) and Γ are nonsingular.

Corollary 3.6 Suppose that G(A, b) defined in (19) with g1(t), . . . , gn(t) ∈ Pn−1 is nonsin-
gular. Let f(t) be a scalar function and τ ∈ C be a scalar such that f(τA) is defined. Then

f(τA) = G(A, d(τ))G(A, b)−1, d(τ) = f(τA)b. (21)

Proof. The proof is trivial.

Remark 3.7 All the results established in this section apply to the matrices and vectors
defined over any field as long as f(τA) is defined and satisfies f(τA)A = Af(τA).
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4 Connections to subspaces and linear transformations

In this section, we interpret Krylov matrices and polynomials of a matrices in terms of linear
transformations.

For any vectors b1, b2 ∈ Cn and scalars α, β, we have

K(A,αb1 + βb2) = αK(A, b1) + βK(A, b2).

So the matrix A introduces a linear transformation: Cn → Cn,n defined by b → K(A, b).
The range of the transformation is the set of the Krylov matrices of A:

K(A) = {K(A, b) | b ∈ Cn},

which is a subspace of Cn,n. Clearly, dim K(A) = n.
Let L(K(A)) be the space of the linear operators on K(A). It has the dimension n2.

Suppose T ∈ L(K(A)) and T ∈ Cn,n is its matrix with the basis {K(A, ej)}nj=1. Then

TK(A, b) = K(A, Tb), ∀b ∈ Cn.

So we may identify L(K(A)) with Cn,n based on the above relation.
Now consider a subspace of L(K(A)) defined by

Lc(K(A)) = {T |TK(A, b) = K(A, Tb) = TK(A, b), ∀b ∈ Cn}.

Define
Pn−1(A) = {p(A;x) |x ∈ Cn}.

From (6), p(A;x) ∈ Lc(K(A)) for any x ∈ Cn. Hence Pn−1(A) ⊆ Lc(K(A)).

Theorem 4.1 Suppose A ∈ Cn,n. Then Pn−1(A) = Lc(K(A)) if and only if A ∈ Cn,n is
nonderogatory.

Proof. For any T ∈ Lc(K(A)), the corresponding matrix T satisfies K(A, Tb) = TK(A, b)
for all b ∈ Cn if and only if TA = AT . Without distinguishing T and its matrix T we have

Lc(K(A)) = {T |TA = AT, T ∈ Cn,n},

which is called the centralizer of A [11, pp. 275]. With this connection, the equivalence
relations follow from [11, Corollary 4.4.18].

Because K(A) and Cn are isomorphic, when A is nonderogatory, Pn−1(A) and Cn are also
isomorphic. So Pn−1(A) and K(A) are isomorphic. Then L(Pn−1(A),K(A)), the space of
linear transformations from Pn−1(A) to K(A), has the dimension n2, and it is isomorphic to
Cn,n. For any S ∈ Cn,n we may introduce S ∈ L(Pn−1(A),K(A)) defined by

Sp(A;x) = K(A,Sx), ∀x ∈ Cn.

(Again, S is considered as the matrix of S with the bases {Aj}n−1
j=0 and {K(A, ej)}nj=1.)

Define

Lc(Pn−1(A),K(A)) = {S |Sp(A;x) = K(A,Sx) = p(A;x)S, x ∈ Cn} ⊆ L(Pn−1(A),K(A)).
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Theorem 4.2 Suppose A is nonderogatory. Then

K(A) = Lc(Pn−1(A),K(A)).

Proof. Formula (6) shows that for any b ∈ Cn, the linear transformation S corresponding
to S := K(A, b) is in Lc(Pn−1(A),K(A)). So if we don’t distinguish S with S, we have

K(A) ⊆ Lc(Pn−1(A),K(A)).

On the other hand, for each S ∈ Lc(Pn−1(A),K(A)), the corresponding matrix S satisfies
K(A,Sx)ej = p(A;x)Sej for j = 1, . . . , n. Using these relations and (1), we have

Aj−1Sx = K(A,Sx)ej = p(A;x)Sej = K(A,Sej)x, ∀x ∈ Cn,

which implies
Aj−1S = K(A,Sej), (22)

for j = 1, . . . , n. Let b = Se1. Then setting j = 1 in (22) we have S = K(A, b), and with
which (22) holds for j = 2, . . . , n. We then have shown

Lc(Pn−1(A),K(A)) ⊆ K(A).

Therefore, the two spaces are the same.
Theorems 4.1 and 4.2 show that when A is nonderogatory, a linear operator on K(A) is

just a polynomial p(A;x) and a linear transformation from Pn−1 to K(A) is just a Krylov
matrix K(A, b), both described by (6). A common technique to generate a new Krylov matrix
from K(A, b) is to choose a new initial vector d = p(A;x)b for an appropriate polynomial
p(t;x). Such a technique is widely used in the QR algorithm and Krylov subspace methods
[19, 8, 9, 20]. Theorem 4.1 shows that in order to obtain K(A, d) expressed as TK(A, b), this
is the only way when A is nonderogatory.

For any b such that K(A, b) is nonsingular, the corresponding Sb ∈ Lc(Pn−1(A),K(A)) is
an isomorphism of Pn−1(A) onto K(A) defined by

Sbp(A;x) = K(A, d) = p(A;x)K(A, b), d = K(A, b)x, ∀x ∈ Cn.

Its inverse is

S−1
b K(A, d) = p(A;x) = K(A, d)K(A, b)−1, x = K(A, b)−1d, ∀d ∈ Cn, (23)

which is just (7).
Using Lc(K(A)) and the isomorphisms of K(A) and Lc(Pn−1(A),K(A)), we are also able

to define a subspace of linear operators on Pn−1(A). Let Sb1 ,Sb2 ∈ Lc(Pn−1(A),K(A)) be
invertible. Define

Lc(Pn−1(A)) =
{

W
∣∣∣∣ Wp(A;x) = S−1

b2
TSb1p(A;x) = p(A; y), T = p(A; z) ∈ Lc(K(A)),
y = K(A, b2)−1p(A; z)K(A, b1)x, ∀x ∈ Cn

}
Clearly, Lc(Pn−1(A)) is isomorphic to Lc(K(A)) = Pn−1(A). So its dimension is n.

When K(A, b) is nonsingular, by Proposition 2.4 we have a Hessenberg reduction form

Q∗AQ = H, Q∗b = γe1, |γ| = ||b||, (24)

where Q is unitary and H is unreduced upper Hessenberg.
The matrices Q and H can be computed by using the Arnoldi process.

Arnoldi process.
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Input: Matrix A and vector b

Output: Unitary matrix Q = [q1, . . . , qn] and upper Hessenberg matrix H = [hij ]

Choose q1 = b/||b||.

For k = 1, . . . , n

hjk = q∗jAqk, j = 1, . . . , k

hk+1,k = ||Aqk − h1kq1 − . . .− hkkqk||
qk+1 = (Aqk − h1kq1 − . . .− hkkqk)/hk+1,k

End

In practice, one uses the modified Arnoldi process [8, Sec. 9.4], or the numerically stable
Hessenberg reduction method with Householder transformations [8, Sec. 7.4]. Note that with
the above Arnoldi process γ = ||b|| and all the subdiagonal elements of H are positive. With
the Hessenberg reduction form (24), by Proposition 2.4, one has the QR factorization

K(A, b) = QR, (25)

where R = K(H, γe1) is nonsingular and upper triangular with rkk = γ
∏k−1
j=1 hj+1,j for

k = 1, . . . , n. From (25),

Q = K(A, b)R−1 =:
[
g1(A)b g2(A)b . . . gn(A)b

]
, (26)

and it is easily verified that gj(t) ∈ Pn−1 and deg gj(t) = j − 1 for j = 1, . . . , n. So Q is a
generalized Krylov matrix of the form (19). In fact the polynomials gi(t) has the following
properties.

Theorem 4.3 The polynomials g1(t), . . . , gn(t) satisfy

g1(t) =
1
γ
, gj(t) =

1

γ
∏j
k=2 hk,k−1

det(tI −Hj−1), j = 2, . . . , n, (27)

where Hk is the leading principal k × k matrix of H given in (24).
Also,

[g1(t), g2(t), . . . , gn(t)] = [1, t, . . . , tn−1]R−1. (28)

Proof. From the Arnoldi process it is not difficult to get the recurrence

g1(t) =
1
γ
, gj+1(t) =

1
hj+1,j

(tgj(t)− h1jg1(t)− . . .− hjjgj(t)), j = 1, . . . , n− 1.

We now prove (27) by induction. When j = 2,

g2(t) =
1
h21

(tg1(t)− h11g1(t)) =
1

γh21
(t− h11) =

1
γh21

det(tI1 −H1).

So (27) holds for j = 2.

11



Assume (27) is true for 1, . . . , j. Expanding det(tI −Hj) based on the last column we get

det(tI −Hj) = (t− hjj) det(tI −Hj−1)− hj−1,jhj,j−1 det(tI −Hj−2)

−hj−2,j

 j∏
k=j−1

hk,k−1

 det(tI −Hj−3)− . . .− h1j

(
j∏

k=2

hk,k−1

)
.

By dividing γ
∏j+1
k=2 hk,k−1 on both side, and using the assumption we have

1

γ
∏j+1
k=2 hk,k−1

det(tI −Hj) =
1

hj+1,j
((t− hjj)gj(t)− hj−1,jgj−1(t)− . . .− h1jg1(t)) = gj+1(t).

So (27) hold also for j + 1.
The relation (28) is simply form (26).
Since K(A, b) is nonsingular, one may introduce the following inner product in Pn−1(A).

〈p(A;x), p(A; y)〉b = b∗p(A;x)∗p(A; y)b = x∗K(A, b)∗K(A, b)y, ∀p(A;x), p(A; y) ∈ Pn−1(A).

The last relation is due to (1). With this inner product we define the norm

||p(A;x)||b = 〈p(A;x), p(A;x)〉1/2b = ||p(A;x)b|| = ||K(A, b)x||.

Then the matrices g1(A), . . . , gn(A) that determine Q in (26) are orthonormal, which can be
viewed as being generated from I, A, . . . , An−1 ∈ Pn−1(A) by applying the Gram-Schmidt
process with respect to the above defined inner product [2]. So g1(A), . . . , gn(A) form an
orthonormal basis for Pn−1(A). Also, the polynomials g1(t), . . . , gn(t) form an orthonormal
basis for Pn−1 with respect to the inner product

〈p(t;x), p(t; y)〉A,b := 〈p(A;x), p(A; y)〉b , ∀p(t;x), p(t; y) ∈ Pn−1,

which can be interpreted as being generated by applying the Gram-Schmidt process to
1, t, . . . , tn−1.

Because K(A) and Pn−1(A) are isomorphic, if K(A, b) is nonsingular, using the isomor-
phism S−1

b defined in (23), an inner product in K(A) can be induced from the inner product
〈·, ·〉b with

〈K(A, u),K(A, v)〉 =
〈
S−1
b K(A, u),S−1

b K(A, v)
〉
b

=
〈
p(A,K(A, b)−1u), p(A,K(A, b)−1v)

〉
b

= (K(A, b)−1u)∗(K(A, b)∗K(A, b))(K(A, b)−1v) = u∗v,

which is just the standard inner product in Cn.

5 More properties related to Hessenberg reductions

Given a nonsingular matrix W , in a similar way one can determine a W -unitary matrix X,
i.e., X∗W ∗WX = I, such that

X−1AX = Ĥ, X−1b = γ̂e1, (29)
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where Ĥ is unreduced upper Hessenberg (by Proposition 2.4). The matrix X can be obtained
by applying the Arnoldi process. The only difference is to make the columns of X to be
W -orthonormal. By Proposition 2.4,

K(A, b) = XR̂, R̂ = K(Ĥ, γ̂e1).

So we also have

X = K(A, b)R̂−1 =
[
ĝ1(A)b ĝ2(A)b . . . ĝn(A)b

]
,

where ĝj(t) ∈ Pn−1 with deg ĝj(t) = j − 1, and ĝ1(A), . . . , ĝn(A) form an orthonormal basis
for Pn−1(A) with the generalized inner product

〈p(A;x), p(A; y)〉W,b = b∗p(A;x)∗W ∗Wp(A; y)b = x∗K(A, b)∗W ∗WK(A, b)y. (30)

Theorem 5.1 Suppose K(A, b) is nonsingular. Let W be nonsingular, X and Ĥ satisfy (29),
and Q,H satisfy (24). Define Q̂ = WX and T = R̂R−1 = K(Ĥ, γ̂e1)K(H, γe1)−1. Then Q̂
is unitary, T is upper triangular, and

T = γ̂[g1(Ĥ)e1, . . . , gn(Ĥ)e1] = γ−1[ĝ1(H)e1, . . . , ĝn(H)e1]−1,

Q = XT,

W = Q̂TQ∗,

H = T−1ĤT.

Proof. It is obvious that Q̂ = WX is unitary and T is upper triangular.
As (28), we have

[ĝ1(t), . . . , ĝn(t)] = [1, t, . . . , tn−1]R̂−1.

Then

T = R̂R−1 = γ̂[g1(Ĥ)e1, . . . , gn(Ĥ)e1] = γ−1[ĝ1(H)e1, . . . , ĝn(H)e1]−1 = (RR̂−1)−1,

which is upper triangular, and from

[g1(t), . . . , gn(t)] = [1, t, . . . , tn−1]R−1 = [1, t, . . . , tn−1]R̂−1(R̂R−1) = [ĝ1(t), . . . , ĝn(t)]T,

we have
Q = XT.

Then
W = Q̂X−1 = Q̂TQ∗,

and from (24) and (29) we have H = T−1ĤT .
This theorem shows the relations between the Hessenberg reduction forms (24) and (29).

In fact, with Â = WAW−1 and b̂ = Wb, (29) can be rewritten as

Q̂∗ÂQ̂ = Ĥ, Q̂∗b̂ = γ̂e1, |γ̂| = ||b̂||.

So (29) is the same as (24) but with Q,A, b replaced by Q̂, Â, b̂.
The next result shows that for any sequence of n polynomials in Pn−1 with degrees in

increasing order, a unitary matrix can be constructed to reduces WAW−1 and Wb to a
Hessenberg reduction form for an appropriate W .
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Theorem 5.2 Suppose that K(A, b) is nonsingular and p(t; r1), . . . , p(t; rn) ∈ Pn−1 with
deg p(t; rj) = j − 1 for j = 1, . . . , n. There exists a nonsingular matrix W such that for

Â = WAW−1, b̂ = Wb,

the matrix
Q̂ = [p(Â; r1)b̂, . . . , p(Â; rn)b̂]

is unitary and satisfies
Q̂∗ÂQ̂ = Ĥ, Q̂∗b̂ = γ̂e1, |γ̂| = ||b̂||,

where Ĥ is unreduced upper Hessenberg.

Proof. Let
R = [r1, . . . , rn], X = [p(A; r1)b, . . . , p(A; rn)b].

By the assumptions R is upper triangular and nonsingular, and X = K(A, b)R is nonsingular.
From AK(A, b) = K(A, b)C, where C is the companion matrix of A, we have

X−1AX = R−1CR =: Ĥ, X−1b = γ̂e1,

where Ĥ is unreduced upper Hessenberg and γ̂ is a scalar.
Let

X = W−1Q̂,

where W is a nonsingular matrix and Q̂ is unitary. Such a factorization always exists, for
instance, an RQ factorization. Then, with this W and the corresponding Â, b̂, we have

Q̂ = WX = W [p(A; r1)b, . . . , p(A; rn)b] = [p(Â; r1)b̂, . . . , p(Â; rn)b̂],

Q̂∗ÂQ̂ = X−1W−1(WAW−1)WX = X−1AX = Ĥ,

and
Q̂∗b̂ = X−1W−1Wb = X−1b = γ̂e1.

Obviously, |γ̂| = ||Q̂∗b̂|| = ||b̂||.

We now use the Hessenberg reduction form (24) to give a factorization for f(A).

Theorem 5.3 Suppose that K(A, b) is nonsingular and A, b have the forms in (24). Then
for any f(t) such that f(A) is defined,

f(A) = QK(H, d̃)K(H, e1)−1Q∗, d̃ = f(H)e1. (31)

Moreover, let Q̃ = [Q̃1, Q̃2] be unitary with Q̃1 ∈ Cn,r such that

HQ̃ = Q̃H̃, H̃ =

[
H̃11 H̃12

0 H̃22

]
, Q̃∗d̃ = γ̃e1, |γ̃| = ||d̃||,

where H̃11 ∈ Cr,r is an r × r unreduced upper Hessenberg matrix. Then rank f(A) = r and

f(A) = (QQ̃1)R̃Q∗, (32)

where
R̃ = γ̃Kr,n(H̃11, e1)K(H, e1)−1,

is upper triangular.
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Proof. Since A = QHQ∗, we have f(A) = Qf(H)Q∗. Applying (14) to f(H) with A = H
and b = γe1,

f(H) = K(H, d̃)K(H, e1)−1, d̃ = f(H)e1.

So we have (31).
The factorization (32) follows by applying Proposition 2.4 to K(H, d̃) in (31).

Corollary 5.4 Suppose K(A, b) is nonsingular. If rank f(A) = r < n, then all the eigenval-
ues of H̃22 are the roots of f(t) = 0 (counting multiplicity), and rangeQQ̃2 = null([f(A)]∗).

Proof. From (32),

(QQ̃)∗f(A)(QQ̃) =
[
R̃
0

]
Q̃.

On the other hand, by using the Hessenberg reduction forms we have

(QQ̃)∗f(A)(QQ̃) = f(H̃) =

[
f(H̃11) ∗

0 f(H̃22)

]
.

So we have f(H̃22) = 0, and (QQ̃2)∗f(A) = 0. Clearly, all the eigenvalues of H̃22 are the
roots of f(t). Since rank f(A) = r, we have rangeQQ̃2 = null([f(A)]∗).

When f(A) is nonsingular, (32) can be also derived by the orthogonalization argument
using the weighted inner product (30) with W = f(A). In this case, (WAW−1,Wb) becomes
(A, d). From Theorem 5.3, the matrices and scalar in (29) are

Q̂ = QQ̃, Ĥ = H̃, γ̂ = γγ̃.

By Theorem 5.1, f(A) has the URV decomposition ([21]),

f(A) = QQ̃TQ∗,

where
T = K(H̃, γγ̃e1)K(H, γe1)−1 = γ̃K(H̃, e1)K(H, e1)−1 = R̃.

The formula (32) is more generalized, since it holds when f(A) is singular as well.

Remark 5.5 Using Af(A) = f(A)A, the matrix R̃ in (32) satisfies H̃11R̃ = R̃H. So R̃ can
be computed column by column with the recurrence

r̃1 = γ̃e1, r̃k+1 = (H̃11r̃k − h1kr̃1 − . . .− hkkr̃k)/hk+1,k, k = 1, . . . , n− 1,

which is the Arnoldi process for qk, but with A replaced by H̃11.
More generally, using

Hf(H) = f(H)H,

one may use the same recurrence to compute f(H), provided f(H)e1 is given. This approach
was mentioned in [14, 15] for f(t) = et.

The next result shows how the unitary matrix is related to Q if it is generated by another
vector.
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Theorem 5.6 Suppose that K(A, b) is nonsingular and A, b have the forms in (24). Let
d ∈ Cn and Q̂ = [Q̂1, Q̂2] be unitary with Q̂1 ∈ Cn,r and satisfy

AQ̂ = Q̂Ĥ, Ĥ =

[
Ĥ11 Ĥ12

0 Ĥ22

]
, Q̂∗d = γ̂e1, |γ̂| = ||d||,

where Ĥ11 ∈ Cr,r is unreduced upper Hessenberg. Let

Q = [Q1, Q2], H =
[
H11 H12

H21 H22

]
, Q1 ∈ Cn,r, H11 ∈ Cr,r.

Then
Q̂1Kr,n(Ĥ11, γ̂e1) = p(A;x)QK(H, γe1), (33)

and
Q̂1Tr = p(A;x)Q1,

where
x = K(A, b)−1d, Tr = Kr(Ĥ11, γ̂e1)Kr(H11, γe1)−1.

Proof. Because x = K(A, b)−1d, by (6),

K(A, d) = p(A;x)K(A, b).

By the Hessenberg reduction forms we have

K(A, d) = Q̂1Kr,n(Ĥ11, γ̂e1), K(A, b) = QK(H, γe1).

So we have (33). The second equation follows by equating the first r columns in (33) to get

Q̂1Kr(Ĥ11, γ̂e1) = p(A;x)Q1Kr(H11, γe1),

and by using the fact that Kr(H11, γe1) is nonsingular.
The relation (33) shows that the unitary matrix corresponding to d in the Hessenberg

reduction is just the unitary factor of the QR factorization of p(A;x)Q for an appropriate
polynomial p(t;x).

Any nonsingular Krylov matrix K(A, b) has a QR factorization (25) with R nonsingular.
If Q = I, from (24) A has to be unreduced upper Hessenberg and b = γe1. In this case
(32) becomes a QR factorization of f(A). If further K(A, b) = I, then b = e1 and A is the
companion matrix C defined in (4). In this case, f(A) and K(A, b) have simpler relations.

Corollary 5.7 Suppose C ∈ Cn,n is a companion matrix defined in (4). Then

p(C; d) = K(C, d), ∀d ∈ Cn.

Proof. It is simply from Theorem 3.1 with A = C and b = e1, and K(C, e1) = In.
If we choose d as c = [c1, . . . , cn]T , the last column of C, then by the Cayley-Hamilton

Theorem,
Cn = p(C; c) = K(C, c).
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Corollary 5.8 Suppose C is the companion matrix (4) and f(t) is a scalar function such
that f(C) is defined. Then

f(C) = K(C, d) = p(C; d), d = f(C)e1.

Proof. It follows from Theorem 3.3 and Corollary 5.7.
If in (25), R = I or equivalently K(A, b) = Q, then Q∗K(A, b) = K(Q∗AQ,Q∗b) = I.

This implies b = Qe1 and A = QCQ∗. In this case, we have a simple formula f(A) =
K(A, d)Q∗. Note that this is one of the situations where the GMRES stagnates when it is
used to solve associated linear systems or eigenvalue problems, [9, Sec. 3.2]. Note also that
when W = K(A, b)−1 in the inner product (30), (WAW−1,Wb) becomes (C, e1). So for any
A, b such that K(A, b) is nonsingular, the above situation occurs (with Q = I) if we consider
the orthonormal polynomials with respect to 〈·, ·〉K(A,b)−1,b in Pn−1.

6 Conclusions

Starting from a simple observation, we derived formulas to show relations between functions
of a matrix and Krylov matrices. By introducing subspaces and linear transformations, we
interpreted the relations at an abstract level. We provided several properties of Hessenberg
reductions that can be used to understand some common techniques used in Krylov subspace
methods and eigenvalue algorithms. How to use the results to improve existing methods and
develop new methods? That needs more work.
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