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Abstract. Bounds are developed for the condition number of the linear finite
element equations of an anisotropic diffusion problem with arbitrary meshes.
They depend on three factors. The first factor is proportional to a power
of the number of mesh elements and represents the condition number of the
linear finite element equations for the Laplacian operator on a uniform mesh.
The other two factors arise from the mesh nonuniformity viewed in the Eu-
clidean metric and in the metric defined by the diffusion matrix. The new
bounds reveal that the conditioning of the finite element equations with adap-
tive anisotropic meshes is much better than what is commonly assumed. Di-
agonal scaling for the linear system and its effects on the conditioning are also
studied. It is shown that the Jacobi preconditioning, which is an optimal di-
agonal scaling for a symmetric positive definite sparse matrix, can eliminate
the effects of mesh nonuniformity viewed in the Euclidean metric and reduce
those effects of the mesh viewed in the metric defined by the diffusion matrix.
Tight bounds on the extreme eigenvalues of the stiffness and mass matrices
are obtained. Numerical examples are given.

1. Introduction

It has been amply demonstrated that significant improvements in accuracy can
be gained when an appropriately chosen anisotropic mesh is used for the numer-
ical solution of problems exhibiting anisotropic features. However, there exists a
general concern in the scientific computing community that an anisotropic mesh,
which can contain elements of large aspect ratio, may lead to ill-conditioned linear
systems and this could outweigh the accuracy and efficiency improvements gained
by anisotropic mesh adaptation. For isotropic mesh adaptation, Bank and Scott [2]
(also see Brenner and Scott [3]) show that after proper diagonal scaling, the con-
dition number of finite element equations with an adaptive mesh is essentially the
same as that for a uniform mesh. Unfortunately, this result does not apply to
anisotropic meshes nor to problems with anisotropic diffusion.

For problems with anisotropic diffusion and arbitrary meshes, several estimates
have been developed for the extreme eigenvalues of the stiffness matrix. For exam-
ple, Fried [7] shows that the largest eigenvalue of the stiffness matrix is bounded by
the largest eigenvalues of element stiffness matrices. Shewchuk [18] obtains sharp
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bounds on the largest eigenvalues of element stiffness matrices for linear triangular
and tetrahedral finite elements. More recently, Du et al. [5] developed a bound that
can be viewed as a generalization of Shewchuk’s result to general dimensions and
simplicial finite elements.

Estimation of the smallest eigenvalue for the general case appears to be more
challenging. Standard estimates (e.g., see Ern and Guermond [6]) are linearly pro-
portional to the volume of the smallest mesh element, which is typically too pes-
simistic for nonuniform meshes. Moreover, Apel [1, Sect. 4.3.3] shows that the
order of the smallest eigenvalue of the stiffness matrix for a specific, specially de-
signed anisotropic mesh is the same as for a uniform mesh. As a matter of fact,
adaptive meshes based on the coefficients of partial differential equations (PDEs)
can even improve the conditioning for PDEs with anisotropic diffusion coefficients,
as observed by D’Azavedo et al. [4] and Shewchuk [18, Sect. 3.2]. A noticeable
approach for obtaining sharper bounds for the smallest eigenvalue is proposed by
Fried [7]. The approach employs a continuous generalized eigenvalue problem with
an auxiliary density function and its key is to find a lower bound for the smallest
eigenvalue of the continuous problem. Bounds for the smallest eigenvalue of the
stiffness matrix obtained with Fried’s approach are valid for general meshes in any
dimension but in d ≥ 3 dimensions they are less sharp than those obtained in this
paper.

The objective of this paper is threefold. First, we develop tight bounds on the
extreme eigenvalues and the condition number of the stiffness matrix for a general
diffusion problem with an arbitrary anisotropic mesh. No assumption on the shape
or size of mesh elements is made in the development. Our upper bound on the
largest eigenvalue can also be expressed in terms of mesh nonuniformity viewed in
the metric tensor defined by the diffusion matrix (which will hereafter be referred
to as the mesh D-nonuniformity). It is comparable to those of Shewchuk [18] and
Du et al. [5] but is expressed as a sum of patchwise terms instead of elementwise
terms as in the aforementioned references. The patchwise nature gives a sharper
bound and makes it more convenient to use in the development of diagonal scaling
preconditioners. To obtain lower bounds for the smallest eigenvalue of the stiffness
matrix we extend Bank and Scott’s result [2] to arbitrary meshes. This generaliza-
tion is not trivial and special effort has to be made to deal with the arbitrariness
of the mesh. Along the way we establish anisotropic upper and lower bounds on
the extreme eigenvalues of the mass matrix which are much tighter than estimates
available in the literature.

The second objective of the paper is to provide a clear geometric interpretation
for the obtained bounds on the condition number of the stiffness matrix. These
bounds are shown to depend on three factors. The first factor is proportional to a
power of the number of mesh elements and represents the condition number of the
stiffness matrix for the linear finite element approximation of the Laplacian operator
on a uniform mesh. The other two factors arise from the mesh nonuniformity in
volume measured in the Euclidean metric (which will be referred to as the mesh
volume-nonuniformity) and from the mesh D-nonuniformity.

The third objective is to study diagonal scaling for the finite element linear sys-
tem and its effects on the conditioning. We focus on the scaling with the diagonal
entries of the matrix (Jacobi preconditioning) since it is an optimal diagonal scaling
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for a symmetric positive definite sparse matrix [10, Corollary 7.6 and the follow-
ing]. We show that the Jacobi preconditioning can eliminate the effects of the mesh
volume-nonuniformity and improve those caused by the mesh D-nonuniformity, thus
significantly reducing the effects of the mesh irregularity on the conditioning. From
the practical point of view, this result indicates that a simple diagonal precondi-
tioning can effectively transform the stiffness matrix into a matrix which has a
comparable condition number as the one with a uniform mesh.

The outline of the paper is as follows. Section 2 briefly describes a linear finite
element discretization of a general anisotropic diffusion problem. Estimation of
the extreme eigenvalues and the condition number of the mass matrix is given
in Section 3. Section 4 deals with the estimation of the largest eigenvalue of the
stiffness matrix. Bounds on the smallest eigenvalue and the condition number of the
stiffness matrix and the effects of diagonal scaling are investigated in Section 5. A
selection of examples in Section 6 provides a numerical validation for the theoretical
findings. Finally, conclusions and further remarks are given in Section 7.

2. Linear finite element approximation

We consider the boundary value problem (BVP) of a general diffusion differential
equation in the form

(1)

{
−∇ · (D∇u) = f, in Ω,

u = 0, on ∂Ω,

where Ω is a simply connected polygonal or polyhedral domain in R
d (d ≥ 1) and

D = D(x) is the diffusion matrix. We assume that D is symmetric and positive
definite and there exist two positive constants, dmin and dmax, such that
(2) dminI ≤ D(x) ≤ dmaxI, ∀x ∈ Ω,

where the less-than-or-equal sign means that the difference between the right-hand
side and left-hand side terms is positive semidefinite.

We are interested in the linear finite element solution of BVP (1). Assume that
an affine family {Th} of simplicial decompositions of Ω is given and denote the
associated linear finite element space by V h ⊂ H1

0 (Ω). A linear finite element
solution uh ∈ V h to BVP (1) is defined by∫

Ω
∇vh · D∇uh dx =

∫
Ω
fvh dx, ∀vh ∈ V h

or ∑
K∈Th

∫
K

∇vh · D∇uh dx =
∑

K∈Th

∫
K

fvh dx, ∀vh ∈ V h.

Since both ∇uh and ∇vh are constant on K, we can rewrite the above equation as

(3)
∑

K∈Th

|K| ∇vh · DK∇uh =
∑

K∈Th

∫
K

fvh dx, ∀vh ∈ V h,

where DK is the integral average of D over K, i.e.,

(4) DK = 1
|K|

∫
K

D(x) dx.

In practice, the integrals in (3) and (4) have to be approximated numerically via a
quadrature rule. Although this will change the definition of DK and the right-hand
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side term of (3) slightly, the procedure and the results in this paper will remain
valid for this situation.

Finite element equation (3) can be expressed in a matrix form. Denoting the
numbers of elements and interior vertices of Th by N and Nvi and assuming that
the vertices are ordered in such a way that the first Nvi vertices are the interior
vertices, we have

V h = span{φ1, . . . , φNvi
},

uh =
∑
j

ujφj ,(5)

where φj is the linear basis function associated with the jth vertex. In (5) and
hereafter, we use the sum

∑
j with the index j ranging over all interior vertices,

i.e.,

∑
j

=
Nvi∑
j=1

Substituting (5) into (3) and taking vh = φi (i = 1, . . . , Nvi), we obtain the
linear algebraic system

Au = f ,

where u = [u1, . . . , uNvi
]T and the stiffness matrix A and the right-hand side term

f are given by

Aij =
∑

K∈Th

|K| ∇φi|K · DK∇φj |K , i, j = 1, . . . , Nvi,(6)

fi =
∑

K∈Th

∫
K

fφi dx, i = 1, . . . , Nvi,

and ∇φi|K and ∇φj |K denote the restriction of ∇φi and ∇φj on K. Our main goal
is to estimate the condition number of stiffness matrix A.

3. Mass matrix

To start with, we consider the element mass matrix B̂ for the reference element
K̂ (which is assumed to be unitary, i.e., |K̂| = 1),

B̂ = (B̂ij), B̂ij =
∫
K̂

φ̂iφ̂j dξ = 1 + δij
(d + 1)(d + 2) , i, j = 1, . . . , d + 1,

where φ̂i’s are the linear basis functions associated with the vertices of K̂ and
δij is the Kronecker delta function. Matrix B̂ is symmetric and positive definite.
Moreover, by direct calculation it can be found that the eigenvalues of B̂ are λ1 =

1
d+1 and λ2 = · · · = λd+1 = 1

(d+1)(d+2) . Thus,

1
(d + 1)(d + 2)

I ≤ B̂ ≤ 1
d + 1

I.
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3.1. Condition number of the mass matrix. Consider the global mass matrix

B = (Bij), Bij =
∫

Ω
φiφj dx, i, j = 1, . . . , Nvi.

Notice that

(7) Bjj =
∫

Ω
φ2
j dx =

∑
K∈ωj

∫
K

φ2
j dx =

∑
K∈ωj

2 |K|
(d + 1)(d + 2)

= 2 |ωj |
(d + 1)(d + 2)

,

where ωj is the element patch associated with the jth vertex and |ωj | is its volume.
The following theorem gives lower and upper bounds on the condition number

of the mass matrix for any dimension and any mesh.

Theorem 3.1 (Condition number of the mass matrix). The condition number of
the mass matrix for the linear finite elements on a simplicial mesh is bounded by

(8) maxj Bjj

minj Bjj
≤ κ(B) ≤ (d + 2)maxj Bjj

minj Bjj
.

Proof. For an element K, let uK be the restriction of the vector u on K and BK

the element mass matrix. Then,

uTBu =
∑

K∈Th

uT
KBKuK =

∑
K∈Th

|K|uT
KB̂uK ≤ 1

d + 1
∑

K∈Th

|K| ‖uK‖2
2 .

Rearranging the sum on the right-hand side according to the vertices and using (7),

uTBu ≤ 1
d + 1

∑
K∈Th

|K| ‖uK‖2
2 = 1

d + 1
∑
j

u2
j |ωj | = d + 2

2
∑
j

u2
jBjj ,

which implies
λmax(B) ≤ d + 2

2
max

j
Bjj .

Similarly, we have

uTBu ≥ 1
2
∑
j

u2
jBjj and λmin(B) ≥ 1

2
min
j

Bjj .

Moreover, it is easy to show that
λmax(B) ≥ max

j
Bjj and λmin(B) ≤ min

j
Bjj .

Combining the above estimates gives

max
j

Bjj ≤ λmax(B) ≤ d + 2
2

max
j

Bjj ,

1
2

min
j

Bjj ≤ λmin(B) ≤ min
j

Bjj ,

from which the estimate (9) follows. �

From (7), Theorem 3.1 implies

(9) |ωmax|
|ωmin|

≤ κ(B) ≤ (d + 2) |ωmax|
|ωmin|

,

where |ωmax| = maxj |ωj | and |ωmin| = minj |ωj |. If the mesh is almost uniform,
then |ωmax|/|ωmin| = O(1) and κ(B) = O(1). On the other hand, |ωmax|/|ωmin|
and κ(B) can become large for nonuniform meshes.
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3.2. Relation to the estimates in the literature. If we denote the maximum
number of mesh elements in a patch by pmax, then

|Kmin| ≤ |ωj | ≤ pmax |Kmax| , ∀j = 1, . . . , Nvi

and estimate (9) implies

(10) κ(B) ≤ (d + 2)pmax
|Kmax|
|Kmin|

,

which is the bound obtained by Fried [7, inequality (24)].
Moreover, for an isotropic mesh,

|Kmax| ∝ hd
max, |Kmin| ∝ hd

min,

where hmax and hmin are the largest and smallest element diameters. Substituting
this into (10) gives

(11) κ(B) ≤ C

(
hmax

hmin

)d

,

which is precisely the standard estimate found in the literature (e.g., [6, Rem. 9.10]).
For anisotropic meshes, on the other hand, the new estimate (9) is much tighter

than both Fried’s estimate (10) and the standard estimate (11), since large
|Kmax| / |Kmin| and hmax/hmin do not necessarily imply large |ωmax| / |ωmin| for
those meshes.1 Furthermore, estimate (9) also provides a tight lower bound, which
is not available with (10) and (11).

3.3. Diagonal scaling for the mass matrix. It is known [10, Corollary 7.6 and
the following] that for a symmetric positive definite sparse matrix, scaling by its
diagonal entries (Jacobi preconditioning) is an optimal diagonal preconditioning
(up to a constant depending on the maximum number of nonzeros per column and
row of the matrix). We are interested in a bound on the condition number after
such preconditioning.

For a diagonal scaling S = (sj), similarly to Theorem 3.1 we obtain

maxj s
−2
j Bjj

minj s
−2
j Bjj

≤ κ(S−1BS−1) ≤ (d + 2)
maxj s

−2
j Bjj

minj s
−2
j Bjj

and, for the Jacobi preconditioning s2
j = Bjj , we have arrived at the following

theorem by Wathen [19] who studies the effects of the diagonal scaling on the
condition number of the Galerkin mass matrix.

Theorem 3.2 ([19, Table 1]). The condition number of the Jacobi preconditioned
Galerkin mass matrix with a simplicial mesh has a mesh-independent bound,

κ(S−1BS−1) ≤ d + 2.

Theorems 3.1 and 3.2 show that the mesh volume-nonuniformity has a significant
effect on the condition number of the mass matrix and that this effect is completely
eliminated by the Jacobi preconditioning.

As we will see later in Section 5, diagonal scaling plays a similar role in reducing
the effects of mesh nonuniformity on the condition number of the stiffness matrix.

1For example, meshes in Figure 2 have |Kmax| / |Kmin| → ∞ but |ωmax| / |ωmin| = O(1).
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4. Largest eigenvalue of the stiffness matrix

The following lemma is valid for any dimension.

Lemma 4.1 (Largest eigenvalue). The largest eigenvalue of the stiffness matrix
A = (Aij) for the linear finite element approximation of BVP (1) is bounded by

(12) max
j

Ajj ≤ λmax(A) ≤ (d + 1) max
j

Ajj .

The largest eigenvalue of the diagonally (Jacobi) preconditioned stiffness matrix
S−1AS−1 has a mesh-independent bound,

(13) 1 ≤ λmax(S−1AS−1) ≤ d + 1.

Proof. First, recall that for any symmetric positive semidefinite matrix M ,

vTMw ≤ 1
2
(
vTMv + wTMw

)
, ∀v,w ∈ R

d+1.

Then, using the local indices on K, the definition of Ajj from (6) and rearranging
the sum according to the vertices, we have

uTAu =
∫

Ω
∇uh · D∇uh dx

=
∑

K∈Th

|K|
d+1∑

iK ,jK=1
(uiK∇φjK ) · DK (ujK∇φjK )

≤ (d + 1)
∑

K∈Th

|K|
d+1∑
jK=1

(ujK∇φjK ) · DK (ujK∇φjK )

= (d + 1)
∑
j

u2
j

∑
K∈ωj

|K| ∇φj · DK∇φj

= (d + 1)
∑
j

u2
jAjj

≤ (d + 1)‖u‖2
2 max

j
Ajj .

On the other hand, using the canonical basis vectors ej we have

λmax(A) ≥ ej
TAej = Ajj , j = 1, . . . , Nvi,

and altogether we get (12).
Using the same procedure for a diagonal scaling S = (sj) we obtain

max
j

(s−2
j Ajj) ≤ λmax(S−1AS−1) ≤ (d + 1) max

j
(s−2

j Ajj).

For the Jacobi preconditioning we have s2
j = Ajj , which gives estimate (13). �

Remark 4.2. Bound (13) can also be obtained by using the unassembled form of A
as shown in [19, Sect. 3]. However, the analysis employed in [19] cannot provide a
lower bound on λmin(S−1AS−1) other than the trivial one, λmin(S−1AS−1) ≥ 0.

Although Lemma 4.1 gives a very tight bound on λmax(A), it does not provide
any explanation on how the mesh or the diffusion matrix affect the conditioning.
We now derive a bound on λmax(A) in terms of mesh quantities and the diffusion
matrix.
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Let FK : K̂ → K be the affine mapping from the reference element K̂ to the
mesh element K, F ′

K the Jacobian matrix of FK , jK the local index of φj on K

and φ̂jK = FK ◦ φjK the corresponding basis function on K̂.
Using the chain rule, we have

Ajj =
∑
K∈ωj

|K|∇φj · DK∇φj

=
∑
K∈ωj

|K|
(
(F ′

K)−T ∇̂φ̂jK

)
· DK

(
(F ′

K)−T ∇̂φ̂jK

)

≤
∑
K∈ωj

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2
‖∇̂φ̂jK‖2

2

≤ Cφ̂

∑
K∈ωj

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2
,(14)

where Cφ̂ = maxiK=1,...,d+1‖∇̂φ̂iK‖2
2. Combining this with Lemma 4.1 yields

(15) λmax(A) ≤ (d + 1)Cφ̂ max
j

∑
K∈ωj

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2
.

Remark 4.3. If we denote the maximum number of elements meeting at a mesh
point by pmax, then bound (15) implies

λmax(A) ≤ pmax(d + 1)Cφ̂ max
K

(
|K|

∥∥∥(F ′
K)−1

DK(F ′
K)−T

∥∥∥
2

)
,

which is comparable to the estimates mostly found in the literature (e.g., [5,7,18]).
Note that both this bound and (15) are less tight than the bound (12).

Remark 4.4. Bound (15) implies that the scaling

s̃2
j =

∑
K∈ωj

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2
, j = 1, . . . , Nvi

will also lead to bounds similar to (13) and those in Section 5. In general, s̃2
j ≥ Ajj

(cf. (14)), although s̃2
j = Ajj in 1D or for a mesh that is uniform in the metric

specified by D
−1 (cf. Section 4.3).

4.1. Geometric interpretation (D = I). For the simplest case of D = I, bound
(15) has a rather simple interpretation. The quantity ‖(F ′

K)−1‖2 can be bounded
by the reciprocal of the in-diameter hmin,K of K [15, Lemma 5.1.2]. If we denote
the average aspect of K by h̄K (i.e., h̄K = |K|

1
d ), then we can rewrite (15) as

λmax(A) ≤ Cφ̂ max
j

∑
K∈ωj

|K|
(

1
hmin,K

)2

= Cφ̂ max
j

∑
K∈ωj

|K|
d−2
d

(
h̄K

hmin,K

)2

.

The ratio h̄K/hmin,K is a measure of the aspect ratio of K. Thus, for the case of D =
I, the largest eigenvalue of A is bounded by the maximum volume-weighted element
aspect ratio of the mesh. This is consistent with the observation by Shewchuk in [18]
where a detailed discussion on the relation between the largest eigenvalue of the
stiffness matrix and the element aspect ratio is available for the case of D = I in
d = 2 and d = 3 dimensions.
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For the general case D �= I, on the other hand, it is more convenient to interpret
bound (15) in terms of the mesh quality measures introduced in [11]. We now
proceed with this.

4.2. Mesh quality measures. The first measure is the alignment quality measure,
which can be simply viewed as an equivalent to the aspect ratio of K in the metric
specified by D

−1
K . It is defined as

Qali,D−1(K) =

⎛
⎝ 1

d tr
(
(F ′

K)−1
DK(F ′

K)−T )
det

(
(F ′

K)−1
DK(F ′

K)−T ) 1
d

⎞
⎠

d
2(d−1)

and measures how closely the principal directions of the circumscribed ellipsoid of
K are aligned with the eigenvectors of DK and the semi-lengths of the principal
axes are proportional to the eigenvalues [15]. Notice that

1 ≤ Qali,D−1(K) < ∞.

In particular, Qali,D−1(K) = 1 implies that K is equilateral in the metric D
−1
K .

The second measure is the equidistribution quality measure defined as the ratio
of the average element volume to the volume of K, both measured in the metric
specified by D

−1
K ,

(16) Qeq,D−1(K) =
1
N σh

|K|
D

−1
K

,

where |K|
D

−1
K

= |K| det(DK)−
1
2 is the volume of K with respect to D

−1
K and

(17) σh =
∑

K∈Th

|K|
D

−1
K

.

The equidistribution quality measure satisfies

0 < Qeq,D−1(K) < ∞ and 1
N

∑
K∈Th

Q−1
eq,D−1(K) = 1.

Notice that

σh =
∑

K∈Th

|K| det(DK)−
1
2 →

∫
Ω

det
(
D(x)

)− 1
2 dx = |Ω|

D−1

as the mesh is being refined. As a consequence, σh can be considered as a constant.

4.3. Geometric interpretation (general case). Using the quality measures we
can rewrite the key factor ‖(F ′

K)−1
DK(F ′

K)−T ‖2 as∥∥∥(F ′
K)−1

DK(F ′
K)−T

∥∥∥
2
≤ tr

(
(F ′

K)−1
DK(F ′

K)−T )
= dQ

2(d−1)
d

ali,D−1(K)
(
|K|det(DK)−

1
2
)− 2

d

= d

(
N

σh

) 2
d [

Qd−1
ali,D−1(K)Qeq,D−1(K)

] 2
d

and, therefore,

(18) λmax(A) ≤ C

(
N

σh

) 2
d

max
j

∑
K∈ωj

|K|
[
Qd−1

ali,D−1(K)Qeq,D−1(K)
] 2

d

.
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Thus, λmax(A) is bounded by the maximum volume-weighted, combined alignment
and equidistribution measure of the mesh in the metric D

−1
K .

When a mesh is adapted to the coefficients of the BVP, i.e., it is uniform in the
metric D

−1, it will have the properties

(19) Qali,D−1(K) = 1, Qeq,D−1(K) = 1, ∀K ∈ Th
and

(20)
(
N

σh

) 2
d

≤
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2
≤ d

(
N

σh

) 2
d

.

Moreover, bound (18) will reduce to

λmax(A) ≤ CN
2
d |ωmax| .

5. Smallest eigenvalue and condition number of the stiffness matrix

The approach employed in this section was originally developed by Bank and
Scott [2] for isotropic meshes. We generalize it here to arbitrary anisotropic meshes.

Hereafter, we will use C as a generic constant which can have different values at
different appearances but is independent of the mesh, the number of mesh elements,
and the solution of the BVP.

We start with bounds on λmin(A).

Lemma 5.1 (Smallest eigenvalue). The smallest eigenvalue of the stiffness matrix
for the linear finite element approximation of BVP (1) is bounded from below by

λmin(A) ≥ CdminN
−1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, for d = 1,(
1 + ln |K̄|

|Kmin|

)−1
, for d = 2,(

1
N

∑
K∈Th

(
|K̄|
|K|

) d−2
2

)− 2
d

, for d ≥ 3,

(21)

where |K̄| = 1
N |Ω| denotes the average element size.

The smallest eigenvalue of the diagonally (Jacobi) preconditioned stiffness matrix
is bounded from below by

(22) λmin(S−1AS−1) ≥ CN−2

(
1

Ndmin

∑
K∈Th

DK
|K̄|
|K|

)−1

, for d = 1

and

(23) λmin(S−1AS−1) ≥ CN− 2
d

(
1

Nd
d
2
min

∑
K∈Th

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥ d

2

2

)− 2
d

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝1 +

∣∣∣∣ln
max
K∈Th

‖(F ′
K)−1

DK(F ′
K)−T‖2∑

K∈Th

|K|‖(F ′
K

)−1
DK(F ′

K
)−T‖2

∣∣∣∣
⎞
⎠

−1

, for d = 2,

1, for d ≥ 3.

Proof. Since Sobolev’s inequality is different for d = 1, d = 2 and d ≥ 3 dimen-
sions [8, Theorem 7.10], we treat these cases separately.
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Case d = 1. Let CS be the constant associated with Sobolev’s inequality. Using
the inequality (2), Sobolev’s inequality, and the equivalence of the vector norms,

uTAu ≥ dmin |uh|2H1(Ω)

≥ dminCS |Ω|−1 sup
Ω

|uh|2

= dminCS |Ω|−1 max
j

u2
j

≥ dminCS |Ω|−1
N−1 ‖u‖2

2 .

Therefore, λmin(A) ≥ CdminN
−1.

With scaling,

(24) uTS−1AS−1u ≥ Cdmin max
j

s−2
j u2

j ≥ Cdmin

∑
j s

2
js

−2
j u2

j∑
j s

2
j

= Cdmin
‖u‖2

2∑
j s

2
j

.

In 1D, ∇φjK |K = ± |K|−1 and, therefore,

s2
j = Ajj =

∑
K∈ωj

|K| ∇φj · DK∇φj =
∑
K∈ωj

DK

|K| .

Using this in (24) gives (22).

Case d = 2. Consider a set of not-all-zero nonnegative numbers {αK ,K ∈ Th} (to
be determined) and a finite number q > 2. Let CP , CS , and CK̂ be the constants
associated with Poincaré’s inequality, Sobolev’s inequality, and the norm equiva-
lence on K̂, respectively. Using (2), Poincaré’s, Sobolev’s and Hölder’s inequalities
and the norm equivalence for ûh, we have

uTAu =
∫

Ω
∇uh · D∇uh dx ≥ dmin |uh|2H1(Ω)

≥ dminCP

1 + CP
‖uh‖2

H1(Ω)

≥ dminCPCS

1 + CP

1
q
‖uh‖2

Lq(Ω)

= dminCPCS

1 + CP

1
q

( ∑
K∈Th

‖uh‖qLq(K)

) 2
q

= dminCPCS

1 + CP

1
q

( ∑
K∈Th

α
q

q−2
K

)− q−2
q
( ∑

K∈Th

α
q

q−2
K

) q−2
q
( ∑

K∈Th

‖uh‖qLq(K)

) 2
q

≥ dminCPCS

1 + CP

1
q

( ∑
K∈Th

α
q

q−2
K

)− q−2
q ∑

K∈Th

αK ‖uh‖2
Lq(K)

= dminCPCS

1 + CP

1
q

( ∑
K∈Th

α
q

q−2
K

)− q−2
q ∑

K∈Th

αK |K|
2
q ‖ûh‖2

Lq(K̂)
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≥ dminCPCSCK̂

1 + CP

1
q

( ∑
K∈Th

α
q

q−2
K

)− q−2
q ∑

K∈Th

αK |K|
2
q ‖uK‖2

2

=
dminCPCSCK̂

1 + CP

1
q

( ∑
K∈Th

α
q

q−2
K

)− q−2
q ∑

j

u2
j

∑
K∈ωj

αK |K|
2
q .

The choice αK = |K|−
2
q yields

uTAu ≥ Cdmin
1
q

( ∑
K∈Th

|K|−
2

q−2

)− q−2
q ∑

j

u2
j

and, therefore,

λmin(A) ≥ Cdminq
−1

( ∑
K∈Th

|K|−
2

q−2

)− q−2
q

≥ Cdminq
−1

(
N |Kmin|−

2
q−2

)− q−2
q

= CdminN
−1

[
q−1(N |Kmin|)

2
q

]
.(25)

The largest lower bound on (25) is obtained for q = max
{
2,
∣∣ln(N |Kmin|

)∣∣} with

q−1(N |Kmin|)
2
q ≥ C

1 +
∣∣ln(N |Kmin|)

∣∣ .
The choice q = 2 is viewed as the limiting case as q → 2+. Estimate (21) follows
from this, (25) and the definition of the average element size.

With scaling, we have

uTS−1AS−1u ≥ Cdmin
1
q

( ∑
K∈Th

α
q

q−2
K

)− q−2
q ∑

j

u2
js

−2
j

∑
K∈ωj

αK |K|
2
q .

For the Jacobi preconditioning s2
j = Ajj =

∑
K∈ωj

∇φj · DK∇φj we choose

αK = |K|
q−2
q

d+1∑
iK=1

∇φiK · DK∇φiK = |K|
q−2
q

d+1∑
iK=1

∇̂φ̂iK · (F ′
K)−1

DK(F ′
K)−T ∇̂φ̂iK ,

which gives
s−2
j

∑
K∈ωj

αK |K|
2
q ≥ 1

and
αK ≤ (d + 1)Cφ̂ |K|

q−2
q

∥∥∥(F ′
K)−1

DK(F ′
K)−T

∥∥∥
2
,

where Cφ̂ = maxiK=1,...,d+1‖∇̂φ̂iK‖2. With these and choosing the value for the
index q in a similar manner as for the case without scaling we obtain (23).

Case d ≥ 3. This case is very similar to case d = 2. Again, from (2), Poincaré’s,
Sobolev’s and Hölder’s inequalities and the norm equivalence for ûh, we have
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uTAu =
∫

Ω
∇uh · D∇uh dx ≥ dmin |uh|2H1(Ω)

≥ dminCP

1 + CP
‖uh‖2

H1(Ω)

≥ dminCPCS

1 + CP
‖uh‖2

L
2d

d−2 (Ω)

= dminCPCS

1 + CP

( ∑
K∈Th

‖uh‖
2d

d−2

L
2d

d−2 (K)

) d−2
d

= dminCPCS

1 + CP

( ∑
K∈Th

α
d
2
K

)− 2
d
( ∑

K∈Th

α
d
2
K

) 2
d
( ∑

K∈Th

‖uh‖
2d

d−2

L
2d

d−2 (K)

) d−2
d

≥ dminCPCS

1 + CP

( ∑
K∈Th

α
d
2
K

)− 2
d ∑

K∈Th

αK ‖uh‖2
L

2d
d−2 (K)

= dminCPCS

1 + CP

( ∑
K∈Th

α
d
2
K

)− 2
d ∑

K∈Th

αK |K|
d−2
d ‖ûh‖2

L
2d

d−2 (K̂)

≥ dminCPCSCK̂

1 + CP

( ∑
K∈Th

α
d
2
K

)− 2
d ∑

K∈Th

αK |K|
d−2
d ‖uK‖2

2

=
dminCPCSCK̂

1 + CP

( ∑
K∈Th

α
d
2
K

)− 2
d ∑

j

u2
j

∑
K∈ωj

αK |K|
d−2
d .

The choice αK = |K|−
d−2
d gives

uTAu ≥ Cdmin

( ∑
K∈Th

|K|
2−d
2

)− 2
d ∑

j

u2
j .

Estimate (21) follows from this and the definition of the average element size.

The bound for the scaled stiffness matrix is obtained by choosing

αK = |K|
2
d

d+1∑
iK=1

∇̂φ̂iK · (F ′
K)−1

DK(F ′
K)−T ∇̂φ̂iK . �

Combining Lemma 4.1, estimate (15) and Lemma 5.1 we obtain upper bounds
on the condition number of the stiffness matrix and the scaled stiffness matrix.

Theorem 5.2 (Condition number of the stiffness matrix). The condition number
of the stiffness matrix for the linear finite element approximation of BVP (1) is
bounded by

(26) κ(A) ≤ CN2 1
dmin

max
j

∑
K∈ωj

DK
|K̄|
|K| , for d = 1

and
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(27) κ(A) ≤ CN
2
d

(
N1− 2

d

dmin
max

j

∑
K∈ωj

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2

)

×

⎧⎪⎪⎨
⎪⎪⎩

1 + ln |K̄|
|Kmin| , for d = 2,(

1
N

∑
K∈Th

(
|K̄|
|K|

) d−2
2

) 2
d

, for d ≥ 3.

The condition number of the diagonally (Jacobi) preconditioned stiffness matrix
is bounded by

(28) κ(S−1AS−1) ≤ CN2 1
Ndmin

∑
K∈Th

DK
|K̄|
|K| , for d = 1

and

(29) κ(S−1AS−1) ≤ CN
2
d

(
1

Nd
d
2
min

∑
K∈Th

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥ d

2

2

) 2
d

×

⎧⎪⎪⎨
⎪⎪⎩

1 +

∣∣∣∣∣∣ln
max
K∈Th

‖(F ′
K)−1

DK(F ′
K)−T‖2∑

K∈Th

|K|‖(F ′
K

)−1
DK(F ′

K
)−T‖2

∣∣∣∣∣∣ , for d = 2,

1, for d ≥ 3.

We now study the geometric interpretation of the bounds.

5.1. Geometric interpretation (without scaling). Bounds (26) and (27) con-
tain three factors, a base bound CN

2
d , a factor reflecting the effects of the mesh

nonuniformity measured in the metric D
−1 (mesh D-nonuniformity), and, if d ≥ 2,

a factor reflecting the effects of the mesh nonuniformity in volume measured in the
Euclidean metric (volume-nonuniformity).

The first factor N
2
d corresponds to the condition number of the stiffness matrix

for the Laplacian operator on a uniform mesh (cf. Special Case 5.1 below).
The second factor

N1− 2
d

dmin
max

j

∑
K∈ωj

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥

2

reflects the effects of the mesh D-nonuniformity and can be understood as a volume-
weighted, combined alignment and equidistribution quality measure of the mesh
with respect to D

−1 (cf. Section 4.3).
The third factor in (27) is⎧⎪⎪⎨

⎪⎪⎩
1 + ln |K̄|

|Kmin| , for d = 2,(
1
N

∑
K∈Th

(
|K̄|
|K|

) d
2−1

) 2
d

, for d ≥ 3.

It measures the effects of the mesh volume-nonuniformity (measured in the Eu-
clidean metric) on the condition number. Notice that there is no effect in 1D
and in 2D it is minimal. In d ≥ 3 dimensions the factor is proportional to the
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average of |K|−1+ 2
d over all elements. This is a significant improvement in compar-

ison with previously available estimates which are proportional to |Kmin|−1 [6] or
|Kmin|−1+ 2

d [7].

5.2. Geometric interpretation (with scaling). Bounds (28) and (29) for the
scaled stiffness matrix have the same base bound as without scaling. Hence, diag-
onal scaling has no effect on the condition number when the mesh is uniform and
D = I.

Unlike (27), bounds (28) and (29) do not have the third factor which involves
only the element volume (in comparison to the second factor which couples (F ′

K)−1

with D
−1). In this sense, a properly chosen diagonal scaling can eliminate the effects

of the mesh volume-nonuniformity on the condition number. Moreover, scaling can
also significantly reduce the effects of the mesh D-nonuniformity. Indeed, the factors
in (28) and (29) that couple (F ′

K)−1 with D
−1 are asymptotically the Lmax{1, d2}(Ω)

norm of ‖(F ′
K)−1

DK(F ′
K)−T ‖2 whereas the corresponding factors in (26) and (27)

are basically the maximum norm.
Furthermore, the D-related factor in (29) for d ≥ 2 can be rewritten in terms of

the alignment quality measure Qali,D−1 from Section 4.2 as

(30)
∑

K∈Th

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥ d

2

2
≤ d

d
2

∑
K∈Th

Qd−1
ali,D−1(K) det(DK)

1
2 .

Thus, the dependence of this D-related factor on the element volume is also mild:
both Qali,D−1(K) and DK (the average of D over K) are invariant under the scaling
transformation of K.

The following special cases are instructional to understand the interplay of the
factors for different types of meshes.

Special Case 5.1 (Uniform meshes). For a uniform mesh and D = I, bounds
(26)–(29) yield

κ(A) ≤ CN
2
d and κ(S−1AS−1) ≤ CN

2
d ,

which is the base bound. Hence, the diagonal scaling has no effect on the condition
number when the mesh is uniform and D = I.

Special Case 5.2 (Isotropic meshes, D = I, d ≥ 2). For an isotropic mesh and
D = I,

|K| ∼ hd
K and

∥∥∥(F ′
K)−1

DK(F ′
K)−T

∥∥∥
2
∼ h−2

K .

Therefore,

1
N

∑
K∈Th

|K|
∥∥∥(F ′

K)−1
DK(F ′

K)−T
∥∥∥ d

2

2
� 1

N

∑
K∈Th

hd
Kh−d

K = 1

and bound (29) reduces to

(31) κ(S−1AS−1) ≤ CN
2
d

{
1 + ln |K̄|

|Kmin| , for d = 2,
1, for d ≥ 3,
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which is precisely the result of Bank and Scott [2, Theorems 4.2 and 5.2]. In this
case, the diagonal scaling becomes

sj = (Ajj)
1
2 =

( ∑
K∈ωj

|K| ∇φj · ∇φj

) 1
2

∼
( ∑

K∈ωj

hd−2
K

) 1
2

∼ h
d−2
2

j ,

where hj denotes the average length of the elements around the jth vertex. This
scaling is equivalent to the change of basis functions

φj → h
2−d
2

j φj ,

which is used in [2, Example 2.1].

Special Case 5.3 (Uniform meshes with respect to D
−1). For a mesh that is

uniform with respect to D
−1, i.e., coefficient adaptive, we have properties (19) and

(20). Bounds (26)–(29) reduce to

κ(A) ≤ C(N |ωmax|)
dmin

(
N

σh

) 2
d

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, for d = 1,
1 + ln |K̄|

|Kmin| , for d = 2,(
1
N

∑
K∈Th

(
|K̄|
|K|

) d
2−1

) 2
d

, for d ≥ 3,

κ(S−1AS−1) ≤ C

dmin

(
N

σh

) 2
d

, for d ≥ 1,

where σh is defined in (17) and corresponds to the volume of the domain in the
metric specified by D

−1. Thus, the condition number of the scaled stiffness matrix
for a coefficient adaptive mesh has the optimal order of O(N 2

d ).

Special Case 5.4 (Aligned meshes, d ≥ 2). For meshes aligned with the diffusion
matrix but not necessarily fully coefficient adaptive (i.e., isotropic but not uniform
with respect to D

−1) we have
Qali,D−1(K) = 1 but Qeq,D−1(K) �= 1.

From (30), bound (29) becomes

κ(S−1AS−1) ≤ C
N

2
d

dmin

(
1
N

∑
K∈Th

det(DK)
1
2

) 2
d
{

1 + ln |K̄|
|Kmin| , for d = 2,

1, for d ≥ 3.

Aside from the term depending on det(D), this bound is equivalent to (31). Hence,
the diagonal scaling almost eliminates the effects of the mesh on the condition
number for D-aligned meshes.

Special Case 5.5 (General M -uniform meshes). Finally, let us consider general
M -uniform meshes, i.e., meshes that are uniform in the metric specified by a given
metric tensor M which does not necessarily correspond to D

−1. In the context of
mesh adaptation, an adaptive mesh is typically generated based on some estimate
of the solution error and the associated metric tensor M is solution dependent.
Thus, it is of interest to know what the impact of a given M on the conditioning
of the stiffness matrix is. Recall [13] that an M -uniform mesh satisfies

(F ′
K)−T (F ′

K)−1 =
(

N

σh,M

) 2
d

MK ,
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where MK is some average of M on K and σh,M is defined as in (17) but with D

replaced by M−1. We have∥∥∥(F ′
K)−1

DK(F ′
K)−T

∥∥∥
2
≤

(
N

σh,M

) 2
d

‖MKDK‖2

and, therefore,

κ(S−1AS−1) ≤ C

dmin

(
N

σh,M

) 2
d

( ∑
K∈Th

|K| ‖MKDK‖
d
2
2

) 2
d

.

Hence, the bound on the condition number after diagonal scaling for an M -uniform
mesh depends only on the volume-weighted average of ‖MKDK‖d/22 or, asymptoti-
cally, the Ld/2 norm of ‖MD‖2. For many problems such as those having boundary
layers and shock waves, mesh elements are typically concentrated in a small portion
of the physical domain. In that situation, we would expect that M differs signif-
icantly from D

−1 only in small regions. As a consequence, the volume-weighted
average of ‖MKDK‖d/22 over the whole domain may remain small and, therefore,
the condition number of the scaled stiffness matrix for anisotropic adaptive meshes
does not necessarily increase as much as generally assumed.

This effect can be observed in Examples 6.2 and 6.3. Figures 3a and 4a show
that the effects of anisotropic adaptation are completely neutralized by the diagonal
scaling when the number of anisotropic elements is small in comparison to N .

6. Numerical experiments

In this section we present numerical results for a selection of one-, two-, and
three-dimensional examples to illustrate our theoretical findings.

Note that all bounds on the smallest eigenvalue contain a constant C. We obtain
its value by calibrating the bound for λmin(S−1AS−1) with Delaunay (Example 6.4)
or uniform meshes (all other examples) through comparing the exact and estimated
values. For the largest eigenvalue we use explicit bounds (12) and (13).

First, we give examples with predefined meshes to demonstrate the influence of
the number and shape of mesh elements on the condition number of the stiffness
matrix and to verify the improvement achieved with the diagonal scaling. For the
tests, we employ the Laplace operator (i.e., D = I) and a mesh on the unit interval,
square, and cube, for 1D, 2D, and 3D, respectively.

Example 6.1 (d = 1, D = I, Chebyshev nodes). For a simple one-dimensional
example we choose a mesh given by Chebyshev nodes in the interval [0, 1],

(32) xi = 1
2

(
1 − cos π(2i− 1)

2 (N − 1)

)
, i = 1, . . . , N − 1.

The exact condition number of the stiffness matrix and its estimates (26) and (28)
are shown in Figures 1a (without scaling) and 1b (with scaling) while those for the
extreme eigenvalues and their estimates are given in Figsures 1c (without scaling)
and 1d (with scaling).

Figure 1a shows that the estimate (26) is much sharper than the standard es-
timate with λmin(A) ∝ |Kmin|. The former has the same asymptotic order as the
exact value as N increases, whereas the latter is too pessimistic and has a higher as-
ymptotic order. The difference is caused by the estimate of the smallest eigenvalue
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Figure 1. Example 6.1: Exact and estimated condition number
and eigenvalues of the stiffness matrix as a function of N (d = 1)

(Figure 1c). Notice that the estimates on the largest eigenvalue are very tight, both
for the scaled and the unscaled cases.

The results clearly show the benefits of diagonal scaling: the order for the con-
dition number of the scaled stiffness matrix in Figure 1b is O(N2 lnN), which is
almost the same as for uniform meshes, whereas that without scaling in Figure 1a
is O(N3). It can be shown analytically that the orders of the nonuniformity factors
in (26) and (28) for the Chebyshev nodes defined with (32) are O(N) and O(lnN)
and those of the corresponding condition numbers are O(N3) and O(N2 lnN).

Thus, the numerical and theoretical results are consistent and the improvement
by diagonal scaling from the maximum norm to the L2 norm is significant in this
example.

Example 6.2 (d = 2, D = I, anisotropic elements in a unit square). For this
2D example we use a mesh for the unit square [0, 1] × [0, 1] with O(N1/2) skew
elements, as shown in Figure 2a. First, we fix the maximum aspect ratio at 125 : 1
and increase N to verify the dependence of the condition number on N (Figure 3a).
Then, we fix N at 20,000 and change the maximum aspect ratio of the mesh elements
to investigate the dependence of the conditioning on the mesh shape (Figure 3b).
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Figure 3a shows the averaging effect of the diagonal scaling: the scaling sig-
nificantly reduces the condition number and, when N becomes large enough, the
conditioning of a scaled system is comparable to the condition number on a uni-
form mesh. Moreover, the estimated value of the condition number with or without
scaling has the same order as the exact value as N increases.

Figure 3b provides a good numerical validation of (27), namely that the condition
number of the unscaled stiffness matrix is linearly proportional to the largest aspect
ratio.2 With scaling, the condition number is still increasing with an increasing
aspect ratio, since the average aspect ratio is also increasing (in accordance to
(29)). Nevertheless, the condition number after scaling is smaller by a factor of 10.

Figure 3b also shows that our estimate of the condition number with scaling has
the same (linear) order as the exact value as the maximum aspect ratio increases,
whereas the bounds for the unscaled case has a slightly higher order. This indicates
that the estimation can be further improved.

As for the estimates on the extreme eigenvalues, the results are mainly the same
as in Example 6.1. For this reason, we omit them in 2D and 3D to save space.

Example 6.3 (d = 3; anisotropic elements in a unit cube). In this example, we
repeat the same test setting as in Example 6.2: fixed anisotropy (25 : 25 : 1) with
increasing number of elements (Figure 4a) and a fixed N = 29, 478 paired with the
changing anisotropy of the mesh (Figure 4b). The results shown in Figure 4 are
essentially the same as in 2D. Since the mesh used in this example has a larger share
of skew elements (O(N−1/3)) than the mesh used in Example 6.2 (O(N−1/2)), it
is reasonable to expect that the averaging effect of diagonal scaling is less effective.
This can be seen in Figure 4 where the exact condition numbers with and without
scaling stay closer than in Figure 3.

Figure 4 shows that the bounds on the condition number with and without
scaling have the same asymptotic order as the exact values as N increases. However,
they have higher orders as the maximum aspect ratio increases for a fixed N . As in
the previous example, this indicates that the estimation can be further improved.

In the next example, we consider an adaptive finite element solution of an
anisotropic diffusion problem with different meshes.

Example 6.4 (d = 2, adaptive anisotropic meshes). Consider an anisotropic dif-
fusion problem studied in [16, 17]. It takes the form of BVP (1) but with a non-
homogeneous Dirichlet boundary condition. The domain and its outer and inner
boundaries Γout and Γin are shown in Figure 5a. The coefficients of the BVP, the
right-hand side and the boundary data are given by

D =
(

cosψ − sinψ
sinψ cosψ

)(
1000 0

0 1

)(
cosψ sinψ
− sinψ cosψ

)
, ψ = π sin x cos y,(33)

f = 0 in Ω = (0, 1)2 \
[
4
9
,
5
9

]2

, g = 0 on Γout, g = 2 on Γin.

We employ an adaptive finite element algorithm from [14, 16] to compute the
numerical solution and adaptive meshes. The algorithm utilizes the M -uniform
mesh approach, i.e., meshes are generated as quasi-uniform in a given metric M .
For the mesh generation we use the bidimensional anisotropic mesh generator [9].

2In 2D with D = I, the nonuniformity term in (27) is equivalent to the aspect ratio.
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O(N1/2) skew elements O(N2/3) skew elements

Figure 2. Predefined meshes for (a) Example 6.2 and (b) Example 6.3
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Figure 3. Example 6.2: Condition number before and after scal-
ing for a predefined 2D mesh (Figure 2a) as a function of (a) the
number of mesh elements and (b) the maximum element aspect
ratio
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Figure 4. Example 6.3: Condition number before and after scal-
ing for a predefined 3D mesh (Figure 2b) as a function of (a) the
number of mesh elements and (b) the maximum element aspect
ratio
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Figure 5. Example 6.4: Boundary conditions and a numerical solution

A Delaunay mesh—our first example (Figure 6a)—is M -uniform (or M -quasi-
uniform) with respect to M = I. The second mesh (Figure 6b) is purely coefficient-
adaptive and is defined as an M -uniform mesh with respect to D

−1, i.e., M =
D

−1. The third mesh (Figure 6c) is a purely solution-adaptive mesh where M =
M(uh) depends on the numerical solution uh (or, more precisely, on the hierarchical
basis error estimate eh). The fourth mesh (Figure 6d) represents a combination of
adaptation to both the solution and the coefficients of the problem and the metric
is defined as M = θ(eh)D−1, where θ(eh) is a scalar function depending on the error
estimator eh. With such choice the shape of mesh elements is determined by the
diffusion matrix while the size is controlled by the estimate of the solution error.

From Figure 6 we can see that the smallest condition number among all four
meshes is with the purely coefficient-adaptive mesh (Figure 6b), which is consistent
with Special Case 5.3. The conditioning is better than in the case of a quasi-uniform
mesh (Figure 6a), confirming the observation that, depending on the problem, a
quasi-uniform mesh is not necessarily the best mesh from the conditioning point
of view. For both cases, diagonal scaling does not improve the condition number
significantly. This is expected since both meshes are almost volume-uniform. To
explain why the mesh in Figure 6b is (almost) volume-uniform, we recall from (16)
and (19) that an M -uniform mesh with respect to D

−1 satisfies

|K| ∼
√

det(DK), ∀K ∈ Th.

The diffusion matrix D in (33) satisfies det(D) = 1000. Thus, |K| = const.
The largest condition number is in the case of the purely solution-adaptive mesh

(Figure 6c). This is because the mesh is not volume-uniform and its elements are
not aligned with D

−1. Since the mesh is far from being uniform in size, scaling will
have a significant impact, as can be verified in Figure 6c: the condition number
after the scaling is even smaller than the condition number with Delaunay meshes.

Conditioning with a mesh that is both coefficient- and solution-adaptive (Fig-
ure 6d) is not as good as in the case of the purely coefficient-adaptive mesh but
better than in the case of the purely adaptive and Delaunay meshes.

In all four cases we observe that the developed estimates for the condition number
of the stiffness matrix are reasonably tight and have the same order as the exact
values as N increases for both unscaled and scaled cases.
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Figure 6. Example 6.4: condition number in dependence of N
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7. Summary and conclusions

Mass matrix. Our new estimate (8) of the condition number of the Galerkin mass
matrix is tight within a factor of (d + 2) from both above and below for any mesh
with no assumptions on mesh regularity or topology. It this sense, it is optimal and
truly anisotropic.

Stiffness matrix. Lemma 4.1 provides an estimate of the largest eigenvalue of the
stiffness matrix which is simple to compute and is tight within a factor of (d + 1)
from both above and below for any mesh. This is in contrast to many existing
estimates which are proportional to the maximal number of elements meeting at a
mesh point.

New bounds (21)–(23) on the smallest eigenvalue and (26)–(29) on the condition
number of the stiffness matrix are a significant improvement in comparison to the
previously available estimates.

First, the new bounds show that the conditioning of the stiffness matrix with an
arbitrary (anisotropic) mesh is much better than generally assumed, especially for
d = 1 and d = 2.

Second, the new bounds are truly anisotropic and valid for any mesh since no
assumptions on the mesh regularity were made.

Third, bounds (26) and (27) reveal what affects the conditioning. There are
three factors. The first (base) factor CN

2
d describes the direct dependence of the

condition number on the number of mesh elements and corresponds to the condition
number for the Laplace operator on a uniform mesh. The second factor describes
the effects of the mesh D

−1-nonuniformity, i.e., the interplay between the shape and
size of mesh elements and the coefficients of the BVP. It is O(1) for a coefficient-
adaptive mesh, i.e., a mesh satisfying (19). The third factor measures how the mesh
volume-nonuniformity further affects the condition number. It has no effect in 1D,
a minimal one in 2D, and a substantial effect in 3D and higher dimensions. This
means that even if the mesh is coefficient-adaptive and the second factor is O(1),
the mesh volume-nonuniformity can still have a significant impact on the condition
number for d ≥ 3.

Fourth, a simple diagonal scaling, such as the Jacobi preconditioning, can signifi-
cantly improve the conditioning. Bound (29) for the condition number after scaling
does not contain the factor for the mesh volume-nonuniformity. As a consequence,
for a coefficient-adaptive mesh, this bound reduces to the base factor CN

2
d . In this

sense, diagonal scaling eliminates the effects of the mesh volume-nonuniformity. It
can also significantly reduce the effects of the mesh nonuniformity with respect to
D

−1: the influence reduces essentially from the maximum norm to the Lmax{1, d2}
norm of ‖(F ′

K)−1
DK(F ′

K)−T ‖2.
Moreover, for a preconditioner that is invariant to diagonal scaling it follows that

the condition number of the preconditioned stiffness matrix is typically smaller than
κ(S−1AS−1) which in turn has a much lower bound than κ(A) (cf. (27) and (29)).
For example, consider an incomplete Cholesky decomposition of A,

A = LLT + E.

It follows that
S−1AS−1 =

(
S−1L

) (
S−1L

)T + S−1ES−1
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is actually an incomplete Cholesky decomposition of S−1AS−1 since S−1L has the
same sparsity pattern as L. Then from the identity

L−1AL−T =
(
S−1L

)−1 (
S−1AS−1) (S−1L

)−T

we see that the preconditioned matrix of A with preconditioner L is equivalent to
the preconditioned matrix of S−1AS−1 with preconditioner S−1L. As a result, the
performance of the preconditioning technique on A is the same as that on S−1AS−1,
which has a much smaller condition number than A. Although there is no estimate
yet on the condition number of the preconditioned system, the above observation
may provide a partial explanation for the good performance of ILU preconditioners
with anisotropic meshes observed in [12].

Numerical experiments (Figures 3a and 4a) indicate that although the new
bounds have the same order as the exact value as the number of elements increases,
they may have higher asymptotic orders than the exact value as the element aspect
ratio increases. These may deserve further investigation.

Finally, we would like to point out that although the study in this paper has
been done specifically for the linear finite element discretization, the approach can
be generalized for higher order finite elements without major modifications.
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