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Abstract

A new backward stable, structure preserving method of complexity O(n3) is presented
for computing the stable invariant subspace of a real Hamiltonian matrix and the stabiliz-
ing solution of the continuous-time algebraic Riccati equation. The new method is based
on the relationship between the invariant subspaces of the Hamiltonian matrix H and

the extended matrix
[

0 H
H 0

]
and makes use of the symplectic URV-like decomposition

that was recently introduced by the authors.
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1 Introduction

It is a well accepted fact in numerical analysis that a numerical algorithm should reflect as
many of the structural properties of the physical problem or the resulting mathematical model.
For the solution of eigenvalue problems this means that use of the symmetry structures of
the matrix or the spectrum is made. While for symmetric matrices this is relatively straight
forward and well established [30], for other structures this is not the case. In the last ten
years Bill Gragg and his co-workers (see, e.g., [3, 17, 18]) have made large contributions to
the much more complicated orthogonal and unitary eigenvalue problems.

In this paper we now discuss another structured eigenvalue problem, the one for Hamilto-
nian matrices. It is a long-standing open problem [29] to compute the eigenvalues and the
invariant subspaces (in particular the stable one) of Hamiltonian matrices via a method that
is of complexity O(n3) and numerically strongly backward stable (in the sense of [9]), i.e., it
is not only backward stable but the computed eigenvalues (subspaces) are the exact eigen-
values (subspaces) of a nearby Hamiltonian matrix. For completeness we recall the following
definition.
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Definition 1.1 Let J :=

[
0 In
−In 0

]
, where In is the n× n identity matrix.

a) A matrix H ∈ R2n×2n is called Hamiltonian iff (HJ)T = HJ . The Lie algebra of
Hamiltonian matrices in R2n×2n is denoted by H2n. We denote the subset of H2n

consisting of Hamiltonian matrices that have no eigenvalues on the imaginary axis by
H∗2n and by H0

2n the set of Hamiltonian matrices, for which all the eigenvalues on
the imaginary axis have even algebraic multiplicity. Matrices H ∈ H2n have the form[
F G
H −F T

]
, where F,G,H ∈ Rn×n, G = GT , and H = HT .

b) A matrix S ∈ R2n×2n is called symplectic iff SJST = J . The Lie group of symplectic
matrices in R2n×2n is denoted by S2n.

c) The group of orthogonal matrices in Rn×n is denoted by Un.

d) A matrix U ∈ R2n×2n is called orthogonal symplectic iff U ∈ S2n ∩ U2n. The
Lie group of orthogonal symplectic matrices in R2n×2n is denoted by US2n. Matrices

U ∈ US2n have the form U =

[
U1 U2

−U2 U1

]
, where U1, U2 ∈ Rn×n.

The reason for the large interest in the solution of the Hamiltonian eigenvalue problem is
its intimate relationship to the solution of the continuous-time algebraic Riccati equation

0 = F TX +XF +H −XGX, (1)

where F,G,H are the blocks in H and X is a real n× n symmetric matrix. It is well-known,

that if X is symmetric and the columns of the matrix

[
In
−X

]
span a Lagrangian invariant

subspace of H then X solves (1), e.g., [23, 29, 24, 28, 22]. (An invariant subspace is called
Lagrangian if it is a maximal isotropic subspace.)

Paige/Van Loan [29] showed that if H ∈ H∗2n, then it has a Hamiltonian Schur-form, i.e.
there exist a matrix Q ∈ US2n such that

QTHQ =

[
T N
0 −T T

]
, (2)

where T is quasi upper triangular and N = NT . The first n columns of Q then span the
desired Lagrangian subspace.

Lin and Ho [25] extended this result to the case thatH has eigenvalues on the imaginary axis.
In this case it is necessary but not sufficient for the existence of a Lagrangian subspace that
the eigenvalues with zero real part have even algebraic multiplicity. But even if a Lagrangian
subspace exists it is not always the case that it is spanned by the columns of a matrix of the

form

[
In
−X

]
, see [22] for details.

Example 1.2 If H = J ∈ US4 ∩H4 then there does not exist a matrix Q ∈ US4, such that

QTHQ =

[
T N
0 −T T

]
,
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since QTJQ = J . But using a non-symplectic permutation matrix Q̂ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



we obtain that Q̂TJQ̂ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 is in Hamiltonian Schur-form. Note that there

exists no symmetric solution to (1).

Remark 1.3 Example 1.2 shows that Hamiltonian Schur-forms may exist, even if the trans-
formation matrices are not symplectic. This does not contradict the result, that the only set
of similarity transformations that leave H2n invariant is S2n (e.g., [10]), since in this case and
also in the case that we study later in this paper, the Hamiltonian matrix has a special struc-
ture, in particular the diagonal blocks are 0. We will, therefore, in contrast to the existing
literature require for a Hamiltonian Schur form only the existence of U ∈ U2n such that

UTHU =

[
T N
0 −T T

]
, (3)

i.e., U need not be symplectic.

Unfortunately, the numerical computation of the Hamiltonian Schur form via a strongly
backward stable O(n3) method has been an open problem since its introduction. Many
attempts have been made to solve this problem, see [11, 24, 28] and the references therein,
but only in special cases a satisfactory solution has been obtained [12, 13]. Furthermore it has
been shown in [1] that a modification of standard QR-like methods is in general hopeless, due
to the missing reduction to a Hessenberg–like form. For this reason other methods like the
multishift-method of [2] were developed that do not follow the direct line of a standard QR-
like method. The multishift method is in principle a satisfactory solution, but unfortunately
it sometimes has convergence problems, in particular for large n.

Recently the authors have proposed a method to compute the eigenvalues (but not the
invariant subspaces) of Hamiltonian matrices using a new approach via non-similarity trans-
formations. This new method is based on the following symplectic URV-like decomposition:

Lemma 1.4 (Symplectic URV Decomposition) Let H ∈ H2n, then there exist U1, U2 ∈
US2n such that

H = U2

[
Ht Hr

0 −HT
b

]
UT1 , (4)

where Ht,Hr,Hb ∈ Rn×n, Ht is upper triangular and Hb is quasi upper triangular (diagonal
blocks of sizes 1× 1 or 2× 2). Moreover,

H = JHTJ = U1

[
Hb HT

r

0 −HT
t

]
UT2 (5)

and the positive and negative square roots of the eigenvalues of HtHb are the eigenvalues of
H.
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Proof. See [8].
Using this URV-like decomposition the authors presented in [8] a new method to compute

the eigenvalues of a Hamiltonian matrix. This is a generalization of the square-reduced
method of Van Loan [34] but in contrast to that method it achieves the full possible accuracy.
There have also been several attempts to build a method for the computation of invariant
subspaces on the square reduced approach [36, 37], but so far none of these approaches led
to a numerically stable procedure.

In this paper we now present a new idea that is based on the new eigenvalue method of [8]
and yields a new method that is not only backward stable, and of complexity O(n3), but also
structure preserving.

The key idea for this new method is to employ the relationship between the eigenvalues

and invariant subspaces of H and the extended matrix

[
0 H
H 0

]
. In principle it can be

applied also to arbitrary matrices and it gives a new way to determine the sign function of
A or the positive square root of A2, [31, 20], but for general matrices it will not be efficient.
For Hamiltonian matrices, however, the new idea can significantly exploit the structure to be
efficient.

The paper is organized as follows: In Section 2 we develop the general theoretical back-
ground for the new algorithm and in Section 3 we then specialize these results to the Hamil-
tonian case and describe the new procedure. An error analysis is given in Section 4 and
numerical examples are presented in Section 5. Some algorithmic details for the new proce-
dure are given in the appendix.

We use the following notation: The spectrum (including multiple eigenvalues) of a matrix
A ∈ Rn×n is denoted by λ(A). The subsets of λ(A) of eigenvalues with positive, zero, and
negative real parts, respectively, are denoted by λ+(A), λ0(A), and λ−(A), respectively. The
associated invariant subspaces of A corresponding to these subsets of eigenvalues are denoted
by Inv+(A), Inv0(A), Inv−(A), respectively. Finally ||·|| refers to the spectral norm.

2 Theoretical Background

In this section we give the theoretical background for our new method. This approach can also
be applied to general matrices, so we present it in general and then show how it specializes
for Hamiltonian matrices in the next section. Let A ∈ Rn×n and consider the eigenstructure
of the extended matrix

B =

[
0 A
A 0

]
. (6)

Let Î =
√

2
2

[
In −In
In In

]
∈ US2n, then

ÎTBÎ =

[
A 0
0 −A

]
. (7)

This implies the following relationship between the spectra of A and B.

λ(B) = λ(A) ∪ λ(−A),
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λ0(B) = λ0(A) ∪ λ0(A), (8)
λ+(B) = λ+(A) ∪ λ+(−A) = λ+(A) ∪ (−λ−(A)) ,
λ−(B) = λ−(A) ∪ λ−(−A) = (−λ+(A)) ∪ λ−(A) = − λ+(B).

(Note that in the spectra we count eigenvalues with their algebraic multiplicities.) We obtain
the following relations for the invariant subspaces of A and B.

Theorem 2.1 Let A ∈ Rn×n and B ∈ R2n×2n be related as in (6) and let

[
Q1

Q2

]
∈ R2n×n,

Q1, Q2 ∈ Rn×n, have orthonormal columns, such that

B

[
Q1

Q2

]
=

[
Q1

Q2

]
R, (9)

where
λ+(B) ⊆ λ(R) ⊆ λ+(B) ∪ λ0(B). (10)

Then
range{Q1 +Q2} = Inv+(A) +N1, where N1 ⊆ Inv0(A), (11)

range{Q1 −Q2} = Inv−(A) +N2, where N2 ⊆ Inv0(A). (12)

Moreover, if we partition R as

R =

[
R11 R12

0 R22

]
, where λ(R11) = λ+(B), (13)

and, accordingly, Q1 =
[
Q11 Q12

]
, Q2 =

[
Q21 Q22

]
, then

B

[
Q11

Q21

]
=

[
Q11

Q21

]
R11, (14)

and there exists an orthogonal matrix Z such that
√

2
2

(Q11 +Q21) =
[

0 P+

]
Z,

√
2

2
(Q11 −Q21) =

[
P− 0

]
Z, (15)

where P+, P− are orthogonal bases of Inv+(A), Inv−(A), respectively.

Proof. Identity (9) implies that AQ2 = Q1R and AQ1 = Q2R. Hence

A(Q1 +Q2) = (Q1 +Q2)R, A(Q1 −Q2) = (Q1 −Q2)(−R).

By (10) we have
range{Q1 +Q2} ⊆ Inv+(A) + Inv0(A), (16)

range{Q1 −Q2} ⊆ Inv−(A) + Inv0(A). (17)

Since λ+(B) ⊆ λ(R), we may assume w.l.o.g. that R is in the form (13) and that we have
(14). With the same argumentation used to derive (16) and (17) we get

range{Q11 +Q21} ⊆ Inv+(A), range{Q11 −Q21} ⊆ Inv−(A).
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If R11 ∈ Rp×p, then dim Inv+(A) + dim Inv−(A) = p. Hence,

rank(Q11 +Q21) + rank(Q11 −Q21) ≤ p.

On the other hand, with √
2

2

[
Q11 +Q21

Q11 −Q21

]
= Î

[
Q11

Q21

]
, (18)

and using that Î and

[
Q11

Q21

]
are orthogonal, we obtain that

rank(Q11 +Q21) + rank(Q11 −Q21) ≥ rank

[
Q11 +Q21

Q11 −Q21

]
= p.

Hence, rank(Q11 +Q21) + rank(Q11−Q21) = p and, since it is clear that range{Q11 +Q21} ∩
range{Q11 −Q21} = {0}, it follows that

range{Q11 +Q21} = Inv+(A), range{Q11 −Q21} = Inv−(A). (19)

Combining this with (16), (17) we obtain (11) and (12).
Now let Z ∈ Up such that

√
2

2
(Q11 −Q21)ZT =

[
P− 0

]
,

and P− has full column rank, i.e., the columns of P− form a basis of Inv−(A). Define

C :=
√

2
2

[
Q11 +Q21

Q11 −Q21

]
ZT =:

[
P11 P+

P− 0

]
,

then from (18), C is orthonormal, so P+ must be orthonormal, i.e., P T+P+ = I. It is obvious
that rankP+ = p−rankP− = p−dim Inv−(A) = dim Inv+(A). Thus, the columns of P+ form
an orthogonal basis of Inv+(A). With (19) we get

Inv+(A) = range{P+} = range{
[
P11 P+

]
}.

Thus, there must exist a matrix Ẑ, such that P11 = P+Ẑ. Again, since C is orthonormal,
we have P T11P+ = 0, which implies 0 = ẐTP T+P+ = ẐT , i.e., P11 = 0. Therefore P− is also
orthonormal and we have (15).

Remark 2.2

a) If in Theorem 2.1, the assumption of

[
Q1

Q2

]
having orthonormal columns is relaxed to

assuming full column rank, then we still obtain results analogous to (11)–(14).

b) The number of columns of

[
Q1

Q2

]
(or the size of R) can be chosen in the interval

[p, 2n− p], where p = dim Inv+(A) + dim Inv−(A), i.e., the spectrum of R may contain
any number of eigenvalues from λ0(B) as long as these admit a real invariant subspace
of B.
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c) If we just assume that λ−(R) = ∅ instead of (10), we only obtain (16) and (17). If
λ(R) ⊆ λ+(B), then range{Q1 +Q2} ⊆ Inv+(A) and range{Q1 −Q2} ⊆ Inv−(A).

If A has no purely imaginary eigenvalues then we have the following corollary as a direct
consequence of Theorem 2.1.

Corollary 2.3 Under the hypotheses of Theorem 2.1 and assuming further that λ0(A) = ∅,
there exists Z ∈ Un such that

√
2

2
(Q1 +Q2) =

[
0 P+

]
Z,

√
2

2
(Q1 −Q2) =

[
P− 0

]
Z, (20)

where P+, P− are orthogonal bases of Inv+(A) and Inv−(A), respectively.

The above results give a direct relationship between a matrix, its sign function, and the
square root of its square. To see this, assume that λ0(A) = ∅. Then there exists a nonsingular
matrix X such that

A = X

[
T1 0
0 T2

]
X−1,

where T1 is a k × k matrix, λ(T1) = λ+(A) and λ(T2) = λ−(A). The matrix

X

[
Ik 0
0 −In−k

]
X−1

is the sign function matrix of A, denoted by Sign(A), (see, e.g., [31, 20]), and the matrix

X

[
T1 0
0 −T2

]
X−1 is the positive square root of A2, denoted by Sqrt(A2) (see, e.g., [21]).

The matrices A, Sign(A), Sqrt(A2) commute, and

Sign(A)2 = In, (21)

ASign(A) = Sqrt(A2), A = Sign(A) Sqrt(A2), (22)

see [20]. Also we have [31, 36, 37]

range{Sign(A) + In} = range{A+ Sqrt(A2)} = Inv+(A), (23)

range{Sign(A)− In} = range{A− Sqrt(A2)} = Inv−(A). (24)

Theorem 2.4 Let A, B, Q1, Q2, R be as in Theorem 2.1. If λ0(A) = ∅, then Q1 and Q2

are nonsingular, and

Sign(A) = Q1Q
−1
2 = Q2Q

−1
1 ,

Sqrt(A2) = Q1RQ
−1
1 = Q2RQ

−1
2 .

(25)

Proof. We can rewrite the equations of (22) as

B

[
In

Sign(A)

]
=

[
In

Sign(A)

]
Sqrt(A2).
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Then
λ(Sqrt(A2)) = λ+(B) = λ(R),

and hence both

[
Q1

Q2

]
and

[
In

Sign(A)

]
span Inv+(B).

Since Inv+(B) is unique, there must be a nonsingular matrix Z such that[
In

Sign(A)

]
=

[
Q1

Q2

]
Z, i.e., Q1Z = In, Q2Z = Sign(A).

By (21), Sign(A) is nonsingular. Thus, Q1 and Q2 are nonsingular and Sign(A) = Q2Q
−1
1 .

Using Sign(A) = Sign(A)−1 we also get Sign(A) = Q1Q
−1
2 .

From (9) we obtain AQ2 = Q1R and AQ1 = Q2R and applying (22)

Sqrt(A2) = ASign(A) = AQ2Q
−1
1 = Q1RQ

−1
1

= AQ1Q
−1
2 = Q2RQ

−1
2 .

Remark 2.5 If λ0(A) 6= ∅, then Sign(A) and Sqrt(A2) are not defined, but Q1, Q2 and R
always exist. These matrices can be considered as generalizations of Sign(A) and Sqrt(A2).
Note further that the results in Theorem 2.1 generalize the formulas (23) and (24).

The results in this section indicate how to obtain a numerical method for the computation
of the invariant subspaces Inv+(A) and Inv−(A) via the Schur form of B. In general, this is
not a suitable method, because we can easily compute invariant subspaces by first forming
the Schur form of A and then reordering the eigenvalues. However, when this approach is
applied to real Hamiltonian matrices, then it turns out to be very useful as we will show in
the following sections.

3 Application to Hamiltonian Matrices

In this section we discuss how the general ideas of the previous section specialize to the case

of Hamiltonian matrices. We will in general assume that H =

[
F G
H −F T

]
∈ H∗2n and we

will point out where the results hold in a more general situation like H ∈ H0
2n. As in the

previous section, we consider the block matrix

B =

[
0 H
H 0

]
. (26)

Observe that if

P =


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 , (27)

then

B̃ := PTBP =


0 F 0 G
F 0 G 0
0 H 0 −F T
H 0 −F T 0

 ∈ H∗4n, (28)
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since by (8) it follows that λ0(B) = λ0(B̃) = ∅.
We have the following main result which we prove constructively.

Theorem 3.1 Let H ∈ H0
2n and B as in (26). Then there exists U ∈ U4n such that

UTBU =

[
R D
0 −RT

]
=: R (29)

is in Hamiltonian Schur form and λ−(R) = ∅. Furthermore, if H ∈ H∗2n, then R has only
eigenvalues with positive real part. Moreover, U = PW with W ∈ US4n, and

R =WT B̃W, (30)

i.e., R is the Hamiltonian Schur form of the Hamiltonian matrix B̃.

Proof. We will make use of the symplectic URV decompositions of H. By Lemma 1.4 there
exist U1, U2 ∈ US2n, such that

H = U2

[
Ht Hr

0 −HT
b

]
UT1 , (31)

H = U1

[
Hb HT

r

0 −HT
t

]
UT2 , (32)

where Ht is upper triangular and Hb is quasi-upper triangular. Taking Û := diag(U1, U2), we
have

B1 := ÛTBÛ =


0 0 Hb HT

r

0 0 0 −HT
t

Ht Hr 0 0
0 −HT

b 0 0

 . (33)

Using the block form of P,

B2 := PTB1P =


0 Hb 0 HT

r

Ht 0 Hr 0
0 0 0 −HT

t

0 0 −HT
b 0


is Hamiltonian and block upper triangular. Let U3 =

[
U11 U12

U21 U22

]
∈ U2n be such that

UT3

[
0 Hb

Ht 0

]
U3 =:

[
Σ Γ
0 −∆

]
, (34)

is in real Schur form with Σ, ∆ ∈ Rn×n quasi upper triangular and

λ(Σ) = λ(∆), λ−(Σ) = ∅. (35)

Then

B3 :=

[
U3 0
0 U3

]T
B2

[
U3 0
0 U3

]
=


Σ Γ Π1 Π2

0 −∆ ΠT
2 Π3

0 0 −ΣT 0
0 0 −ΓT ∆T

 . (36)
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Note that B3 is already in Hamiltonian Schur form. The order of the eigenvalues on the block
diagonal may, however, be not as we require. But using the reordering procedure of Byers

[12, 13], there exists an orthogonal symplectic matrix V :=


In 0 0 0
0 V1 0 V2

0 0 In 0
0 −V2 0 V1

 ∈ US4n

such that

R := VTB3V =


Σ Γ̃ Π1 Π̃2

0 ∆̃ Π̃T
2 Π̃3

0 0 −ΣT 0
0 0 −Γ̃T −∆̃T

 . (37)

is in Hamiltonian Schur form with the required eigenvalue reordering and Ũ := diag(U3, U3)V ∈
US4n.

The remaining assertions follow, since W = PTU = PT ÛPŨ and PT ÛP, Ũ ∈ US4n.

Remark 3.2 The transformation matrix U3 in the proof of Theorem 3.1 can be obtained in

an efficient way by exploiting the structure of

[
0 Hb

Ht 0

]
, recalling that Hb is already quasi-

upper triangular and Ht is upper triangular. For details of this reduction see the appendix.

If we partition U :=

[
U11 U12

U21 U22

]
, Uij ∈ R2n×2n, then using the structures of the matrices

Û , P, U3 and V we obtain

U11 = U2

[
U11 U12V1

0 −U12V2

]
, U21 = U1

[
U21 U22V1

0 −U22V2

]
. (38)

By Theorem 2.1 we have

range{U11 − U21} = Inv−(H) +N1, range{U11 + U21} = Inv+(H) +N2, (39)

where N1, N2 ⊂ Inv0(H). Clearly, if H ∈ H∗2n then, since Inv0(H) = ∅, we have computed
the required subspace.

The construction in the proof of Theorem 3.1 leads to the following algorithm for computing
the desired (stable) invariant subspace of a Hamiltonian matrix H ∈ H∗2n. The computation
of the unstable invariant subspace can be done simultaneously.

Algorithm 1 This algorithm computes the Lagrangian invariant subspace of a Hamiltonian
matrix H ∈ H∗2n, corresponding to the eigenvalues in the left half plane.

Input: Hamiltonian matrix H ∈ H∗2n.

Output: Y ∈ R2n×n, with Y TY = In, range{Y } = Inv−(H).

Step 1 Apply Algorithm 2 of [8] to H and compute the symplectic URV decomposition,

H := U2

[
Ht Hr

O −HT
b

]
UT1 , U1, U2 ∈ US2n.
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Step 2 Determine U3, ∆ as in (34). Compute Π3 as in (36).

Step 3 Compute V from the orthogonal symplectic reordering scheme of Byers [13].

Step 4 Form U11, U21 as in (38). Set Ŷ :=
√

2
2 (U11 − U21). Compute Y , an orthogonal

basis of range{Ŷ }, using any numerically stable orthogonalization scheme, for example
a rank-revealing QR-decomposition; see, e.g., [14].

End

Remark 3.3 In the last step of Algorithm 1, a QR factorization is usually sufficient to
determine the required invariant subspace because of (20). But in general it is more reliable
to use a rank-revealing QR-decomposition, see, e.g., [14].

We have estimated the computational cost for this algorithm under the following assump-
tions. We assume that the periodic QR-iteration needs an average of two iterations per
eigenvalue, that the diagonal blocks in Hb are all 2 × 2, that we used a rank-revealing QR
decomposition in Step 4 and the method described in the appendix in Step 2. The flop counts
for the four steps are given in Table 1.

Step 1 2 3 4 total
flops 103 n3 9 n3 9 n3 42 n3 163 n3

Table 1: Flop counts for Algorithm 1

These numbers compare with 203n3 flops for the computation of the same invariant subspace
via the standard QR-algorithm as suggested in [23].

The storage requirement for this algorithm is about 9n2, a little more than the 8n2 required
for the Schur vector method [23] based on an implementation of the standard QR algorithm
[4].

Remark 3.4 Up to now we have discussed only the computation of the stable invariant
subspace of the Hamiltonian matrix and not the solution of algebraic Riccati equation (1),
since the invariant subspace computation is more general and can also be used in other
applications. Clearly we can obtain the stabilizing solution of the Riccati equation from the
invariant subspace but it is also possible to get it directly from Ŷ . As both, range(Ŷ ) and

range

([
I
−X

])
form a basis of Inv−(H) and moreover, Inv−(H) is isotropic with respect

to the inner product defined by J =

[
0 I
−I 0

]
(see, e.g., [22]), we have

[
I
−X

]T
JY =

[
X In

]
Ŷ = 0.

Let Ŷ =

[
Ŷ1

Ŷ2

]
, Ŷ1, Ŷ2 ∈ Rn×2n, then XŶ1 = −Ŷ2. The solution X can thus be computed

directly by solving this overdetermined, consistent set of linear equations. (Note that under
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the given assumptions, it is clear that rank(Ŷ1) = n.) In this case it is not necessary to
explicitly form an orthogonal basis for range(Ŷ ) as in Step 4 of Algorithm 1.

Remark 3.5 By Remark 2.2 c), as long as λ(R) ⊆ λ+(B), range{Q1 − Q2} ⊆ Inv−(A)
regardless of the size of R. So in Algorithm 1 we can easily check whether

range{U2

[
U11

0

]
− U1

[
U21

0

]
} = Inv−(H)

after we have finished Step 2. If the subspace is satisfactory, then we may stop the algorithm
after Step 2, otherwise we continue the process. In general, however, it may happen that
rank(Q1 −Q2) < dim Inv−(A), i.e., some basis vectors of the invariant subspace are missing,
or the computed bases are not accurate. We will demonstrate this phenomenon in Section 5.
If we stop after Step 2 then the computational cost reduces to 118n3 flops and the storage
requirement reduces to 8n2.

Remark 3.6 Algorithm 1 can also be applied to matrices with eigenvalues on the imaginary
axis. But in this case it is not clear which invariant subspace we wish to compute, i.e., which of
the eigenvectors and principal vectors corresponding to purely imaginary eigenvalues should
be contained in the invariant subspace. In this case it is also sometimes difficult to decide
in finite precision arithmetic whether a Lagrangian subspace exists, because this depends on
the partial multiplicities of the eigenvalues, see [22, 25]. These questions are currently under
investigation.

4 Error Analysis

In this section we present an error analysis for Algorithm 1 applied to matrices in H∗2n. We
show that the method computes the Hamiltonian Schur form of a Hamiltonian matrix close
to B̃ (defined in (28)). This is not quite what we would like to have. It would be ideal to
compute the Hamiltonian Schur form of H directly, without having to use B or B̃. How to
get this ideal method is still an open problem.

In the following we use Sep(A,B) := minX 6=0
||AX−XB||
||X|| , where || . || is the spectral norm,

and by ε we denote the machine precision. We first introduce several lemmata.

Lemma 4.1 Suppose that H ∈ H∗2n has the Hamiltonian Schur form

QTHQ =

[
T N
0 −T T

]
, Q =

[
Q11 Q12

−Q12 Q11

]
∈ US2n

with λ(T ) = λ−(H). Let P =

[
P1 P2

−P2 P1

]
∈ US2n be such that

P T
[
−T T 0
N T

]
P =

[
−T̂ T N̂

0 T̂

]

with λ(T̂ ) = λ(T ) = λ−(H). Let

Q :=
√

2
2


Q11 0 Q12 0

0 Q11 0 Q12

−Q12 0 Q11 0
0 −Q12 0 Q11



−In P2 0 P1

In P2 0 P1

0 −P1 −In P2

0 −P1 In P2

 ∈ US4n, (40)
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then

QT B̃Q =


−T 0 −N 0
0 −T̂ T 0 −N̂
0 0 T T 0
0 0 0 T̂

 =:

[
M S
0 −MT

]
∈ H∗4n. (41)

Proof. The proof follows by direct calculation.

Lemma 4.2 Let M be as in (41) then

δ := Sep(MT ,−M) = min{Sep(T T ,−T ),Sep(T̂ ,−T̂ T )}. (42)

Proof. Since λ(M) = λ+(M), applying the results in [19], we have Sep(MT ,−M) = 1/ ||X||,
whereX is the solution of the Lyapunov equationMTX+XM = I2n. AsM = diag(−T,−T̂ T )
and λ(T ) = λ(T̂ ) = λ−(H), it follows that X = diag(X1, X2), where Xj , j = 1, 2, are the
solutions of the Lyapunov equations T TX1 + X1T = −In, T̂X2 + X2T̂

T = −In. Then,
again from [19], we have Sep(T T ,−T ) = 1/ ||X1|| and Sep(T̂ ,−T̂ T ) = 1/ ||X2||. Hence, ||X|| =
max{||X1|| , ||X2||} implies (42).

Our next result gives a structured error analysis for the computation of the Hamiltonian
Schur form of B̃.

Lemma 4.3 If R, U are the computed factors in the Hamiltonian Schur form (30) of B
determined by Algorithm 1 and if W = PTU , where P is defined in (27), then

UTBU =WT B̃W = R+ E , (43)

where
E ∈ H4n, ||E|| ≤ cε ||H|| , (44)

and c is some constant.

Proof. Using standard backward error analysis [35], since U1, U2 ∈ USn, there exists

F =

[
F11 F12

F21 F22

]
∈ R2n×2n, ||F|| ≤ c1ε ||H|| ,

such that (rewritten in a forward way)

UT2 HU1 =

[
Ht Hr

0 −HT
b

]
+ F , UT1 HU2 =

[
Hb HT

r

0 −HT
t

]
+ JFTJ.

So with Û , P as in Theorem 3.1,

PT ÛTBÛP = PT (B1 +

[
0 JFTJ
F 0

]
)P =: B2 + E1,

where B2 ∈ H0
4n and

E1 =


0 −F T22 0 F T12

F11 0 F12 0
0 F T21 0 −F T11

F21 0 F22 0

 ∈ H4n
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satisfies ||E1|| = ||F|| ≤ c1ε ||H||. Note that the matrix F in general is not Hamiltonian and
note further that we cannot guarantee that B2 ∈ H∗4n, since perturbations may have moved
eigenvalues on the imaginary axis.

Steps 2 and 3 of Algorithm 1 only use 4n×4n orthogonal symplectic transformation matrices
to transform B2 to R. Thus, these steps satisfy a strong backward error analysis in the sense
of Bunch [9], i.e., there exists E2 ∈ H4n, such that

ŨTB2Ũ = R+ E2, ||E2|| ≤ c2ε ||B2|| ≤ c2(1 + c1ε)ε ||H|| .

Hence, UTBU = R+ E with E = E2 + ŨTE1Ũ ∈ H4n and

||E|| ≤ ||E2||+ ||E1|| ≤ cε ||H|| ,

where c = c2(1 + c1ε) + c1.
This lemma shows that the backward error matrix in the computation of the Hamiltonian

Schur form of B̃ is a Hamiltonian matrix .

Now we have prepared the ground for analyzing the errors in the matrix Y computed by
Algorithm 1. In order to simplify the presentation, in the following we do omit the analysis for
Step 4 of Algorithm 1, since this analysis is well-known [15] and we assume that the columns
of Y form an orthogonal basis of the left singular vector subspace of Ŷ , associated with the
n largest singular values.

Theorem 4.4 Let M = QT B̃Q =

[
M S
0 −MT

]
∈ H∗4n be the Hamiltonian Schur form of

B̃ as in (41), let δ = Sep(MT ,−M) be as in (42), and let E be the forward error matrix as in
(43), (44). Furthermore, let Y be the exact output of Algorithm 1 and Yε the computed output
in finite arithmetic. Denote by Θ ∈ Rn×n the diagonal matrix of canonical angles between
range{Y } and range{Yε}. If

8 ||E|| (δ + ||S||) < δ2, (45)

then
||sin Θ|| < cs

||E||
δ

< cscε
||H||
δ
, (46)

with cs = 8
√

10 + 4√
10 + 2

≈ 11.1.

Proof. By (41) and (43),

ZT (M+ Ê)Z = R, Z = QTW, Ê = −ZEZT .

Partition Ê :=

[
Ê1 Ê2

Ê3 −ÊT1

]
∈ H4n conformable to M. Then applying [32, Theorem V.2.5]

it follows from (45) that

Sep((M + Ê1)T ,−(M + Ê1)) ≥ Sep(MT ,−M)− 2
∣∣∣∣∣∣Ê1

∣∣∣∣∣∣ ≥ δ − 2 ||E|| ≥ 3δ
4
.

Inequality (45) implies that ||E|| ||S|| < δ2

4 − δ ||E||. Adding ||E||2 on both sides we obtain

||E|| (||S||+ ||E||) < (δ − 2 ||E||)2

4
,
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which implies that

||Ê3||(||S||+ ||Ê2||) <
(δ − 2||Ê1||)2

4
. (47)

Applying [32, Theorem V.2.7], there exists a symmetric matrix W ∈ R2n×2n satisfying the
algebraic Riccati equation

(M + Ê1)TW +W (M + Ê1) +W (S + Ê2)W − Ê3 = 0, (48)

and

||W || ≤ 2
||Ê3||

δ − 2||Ê1||
<

8
3
||Ê3||
δ

<
1
3
, (49)

where the last inequality follows from (45). (Note that in [32], Sep is defined using the
Frobenius norm, the proof there is identical in spectral norm.) If we form

Ẑ :=

[
I2n −W
W I2n

] [
(I2n +W 2)−

1
2 0

0 (I2n +W 2)−
1
2

]
,

then Ẑ ∈ US4n, and

R̂ = ẐT (M+ Ê)Ẑ =:

[
R̂ D̂

0 −R̂T

]
with

R̂ = (I +W 2)
1
2 [M + Ê1 + (S + Ê2)W ](I +W 2)−

1
2 . (50)

We will prove that Ẑ and Z are essentially equal (up to a block orthogonal matrix which
will not affect the results). Since R̂ is similar to R it suffices to prove that λ(R̂) = λ+(R̂),
i.e., the spectrum of R̂ remains in the right half complex plane. (Therefore in such a case
λ(R) = λ+(R), where R is the upper left block of R.)

Let t ∈ [0, 1] and E(t) = tÊ , then clearly E(t) satisfies (45). So from [32, Theorem V.2.11]
for every matrix M + E(t), there exist a W (t), the unique minimal norm solution of the
Riccati equation analogous to (48), satisfying

||W (t)|| < 2t ||E||
δ − 2t ||E||

<
1
3
.

Hence, constructing Ẑ(t) analogously it follows that M + E(t) is similar to a block upper

triangular Hamiltonian matrix R̂(t) =

[
R̂(t) D̂(t)

0 −R̂(t)T

]
, with

R̂(t) = (I +W (t)2)
1
2Rs(t)(I +W (t)2)−

1
2 ,

Rs(t) := M + tÊ1 + (S + tÊ2)W (t).

Condition (45) implies the bound (49) for ||W (t)|| and then by elementary calculations it
follows that for all t ∈ [0, 1],

Sep(Rs(t)T ,−Rs(t)) ≥ δ − 2
||E|| (δ + 2 ||S||)
δ − 2 ||E||

>
δ

2
> 0. (51)
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The solutions W (t) of the algebraic Riccati equation analogous to (48) with parameters
depending on t is continuous in the coefficients, e.g., [22, Theorem 11.2.1] and also the eigen-
values of Rs(t) and R̂(t) are continuous in t.

Now suppose that some eigenvalues of R̂ = R̂(1) are in the closed left half complex plane.
Then, by continuity, there must exist t0 ∈ [0, 1] such that λ0(R̂(t0)) 6= ∅. But this implies
Sep(Rs(t0)T ,−Rs(t0)) = 0, which contradicts (51).

Thus it follows that Ẑ = Z diag(V, V ) for some V ∈ U2n, without loss of generality we may
assume that Z = Ẑ, i.e., W = QẐ.

Recall the block forms of Q, Q, U and the relations (29), (30). If we partition Q =[
Q1 Q2

]
with Q1, Q2 ∈ R2n×n, then by simple calculations

Ŷ := U21 − U11 = PW
[
I2n

0

]
= PQẐ

[
I2n

0

]
= (

[
Q1 0

]
−
[
Q2 0

]
W )(I2n +W 2)−

1
2 .

=
[
Q1 0

]
+
[
Q1 0

]
((I2n +W 2)−

1
2 − I2n)

−
[
Q2 0

]
W (I2n +W 2)−

1
2

=:
[
Q1 0

]
+ EY =: Y + EY .

Performing some elementary calculations and using (49) we obtain

||EY || ≤ 1− 1√
1 + ||W ||2

+
||W ||√

1 + ||W ||2

<
3
√

10 + 12
3
√

10 + 10
||W || =: ρ ||W || <

√
10 + 4

3
√

10 + 10
.

This means that Ŷ can be considered as Y perturbed by EY . Let the singular values of Ŷ be
given by σ1 ≥ · · · ≥ σ2n ≥ 0. Since the singular values of Y are 1 and 0 both with multiplicity
n, we have

min
1≤k≤n

σk ≥ 1− ||EY || , max
n+1≤k≤2n

σk ≤ ||EY || .

So

η := min
1≤k≤n

σk − max
n+1≤k≤2n

σk ≥ 1− 2 ||EY || >
√

10 + 2
3
√

10 + 10
.

Using the assumptions on Y and inequality (49), it follows by a result of Wedin (e.g., [32,
Theorem V.4.4]) that

||sin Θ|| ≤ ||EY ||
η

<
ρ

η
||W || < cs

||E||
δ

which is the first inequality of (46). The second inequality then follows from (44).

Remark 4.5 In the literature, assumption (45) usually is needed with a factor 4 instead of
8. The factor 8 here is artificial, any other factor ≥ 4 that guarantees that η > 0 in the proof
of Theorem 4.4 is sufficient.

In general, (45) only guarantees that the eigenvalues corresponding to the considered in-
variant subspace are separated from the remaining others. But for structured perturbations
of a Hamiltonian matrix in H∗4n, it also guarantees that eigenvalues are not moved across the
imaginary axis by these perturbations.
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Remark 4.6 Sep(T T ,−T ) can be considered as a condition number for Inv−(H). It is not
difficult to see that Sep(T̂ ,−T̂ T ) can be viewed as a condition number for Inv+(H).

If Sep2(T T ,−T ) ≈ Sep2(T̂ ,−T̂ T ), then the bound (46) is similar to the bound obtained
when an ideal strongly backwards stable algorithm would be used to compute the Hamiltonian
Schur form. However, in general these two separations may be quite different.

Consider the following example. Let

T =

[
−α 1
0 −α

]
, R =

[
−1 0
0 0

]
, H =

[
T R
O −T T

]
.

Then

T̂ =

[
−α −2α√

1+4α2

0 −α

]
.

If α is sufficiently small then Sep(T T ,−T ) ≈ 4α3, while Sep(T̂ ,−T̂ T ) ≈ 2α.
This analysis shows, that Inv+(B) can be more ill-conditioned than Inv+(H), since both

Inv+(H) and Inv−(H) are combined and there is a theoretical possibility that the less ill-
conditioned subspace is contaminated by the more ill-conditioned. But the conditioning of
Inv+(B) is no worse than the conditioning of the more ill-conditioned of the two subspaces.
Nevertheless, in theory, we cannot exclude the possibility that the computed subspace is
not computed as accurate as the original data would permit. We do not know whether this
scenario can really happen, since our algorithm carefully exploits the structure of B and
thus the rounding errors are not completely general. Furthermore, our algorithm computes
both, Inv−(H) and Inv+(H), simultaneously, and also gives bounds for both the condition
numbers. So if both subspaces are required simultaneously, then our algorithm yields the
maximal possible precision.

Remark 4.7 Our new algorithm is clearly not structure preserving for H but it is structure
preserving and actually strongly backwards stable for B̃. This is not ideal, since we would
prefer the method to be strongly backwards stable for H, but it is very close to the ideal case.

5 Numerical Examples

In this section we compare Algorithm 1 to other solution methods for algebraic Riccati equa-
tions by applying all the solvers to the problems of the benchmark collection for continuous-
time algebraic Riccati equations [7] using the default parameters given there. The solutions
of the algebraic Riccati equations are computed by solving the linear system XU11 = −U21,
where U11, U21 are the (1, 1), (2, 1) blocks of U as returned from our new algorithm.

We implemented Algorithm 1 using MATLAB version 4.2c and compared this implemen-
tation with MATLAB implementations of other Riccati solvers.

• alg1

This is an implementation of the full Algorithm 1.

• alg1a

This is an implementation of Algorithm 1 stopped after Step 2.
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• are

Laub’s Schur vector method [23] from the MATLAB Control Toolbox, Version 3.0b [26].

• care

The CARE solver contained in the MATLAB LMI Toolbox [16]. This solver is based
on the deflating subspace approach [33] as presented in [5].

• aresolv

The Schur vector method [23] implementation from the MATLAB Robust Control Tool-
box, Version 2.0b [27].

• osmare

The multishift method as described in [2] (MATLAB codes as described in [6]).

Note that all algorithms are implemented without any kind of scaling.
Computations were performed either on a PC Pentium-s with IEEE standard double pre-

cision arithmetic and machine precision ε ≈ 2.22× 10−16 or on a SunSparc ULTRA 1 under
Solaris 2.5.1. (Note that Example 20 from the benchmark collection is missing, since it re-
quires more memory than available.) The results are shown in the following tables. Table 2
shows the spectral norms of the obtained residuals while in Table 3, the relative errors in the
spectral norm are given. Note that in Table 3 we list only those examples for which the exact
stabilizing solution is available.

In general, Algorithm 1 produces errors of the same order as the best of the other methods.
For the problems of larger dimension (Examples 15, 16, 18, 19), the new method produced the
best results while the multishift method suffers from convergence problems and looses 1 to 3
orders of magnitude compared to Algorithm 1. Note that in Examples 6 and 11, the residual
increases if the new method is not stopped after Step 2 while the residual when stopping after
Step 2 is again of the same order as for the other methods.

The large residuals in Examples 7, 12 and 17 are due to badly scaled algebraic Riccati
equations. The relative errors obtained in these examples are in accordance with the condition
of the matrix U11 which has to be factored in order to solve for X.

In Example 14, the solutions computed by Algorithm 1 and the methods based on the Schur
vector approach are nonsymmetric and the eigenvalues of X̂ appear in complex conjugate
pairs, while the multishift method yields the required symmetric solution. However, the
symmetric parts (X̂T + X̂)/2 of the approximate solutions are also good approximations to
X in this example, in the sense that the residuals are still of the same order.

In Example 11 the Hamiltonian matrix has eigenvalues on the imaginary axis causing the
new method and the Schur vector method to loose half the number of significant digits while
the multishift method computes the solution to full accuracy. From the other examples with
eigenvalues close to the imaginary axis it seems that the multishift algorithm can handle this
problem a little better (which can be explained by the fact that it is not affected by the
conditioning of Inv+(H), i.e., Sep(T̂ ,−T̂ T )). On the other hand, the new method overcomes
the problems of the multishift method for growing dimensions while still being substantially
faster than the Schur vector method.

The variant that stops after Step 2 of Algorithm 1 breaks down in Example 10. In this case,
one computes a basis of an invariant subspace of dimension one (while the desired subspace
has dimension two).
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Table 2: Absolute residuals for the compared MATLAB functions.

alg1 alg1a are care aresolv osmare

1 0 2.3× 10−15 6.3× 10−15 6.1× 10−15 1.4× 10−14 7.2× 10−16

2 3.9× 10−13 1.9× 10−13 1.8× 10−13 3.1× 10−13 5.8× 10−13 1.3× 10−13

3 1.4× 10−14 8.5× 10−14 2.4× 10−14 3.1× 10−14 2.7× 10−14 1.0× 10−14

4 9.0× 10−15 2.6× 10−14 4.1× 10−15 3.6× 10−14 5.6× 10−15 2.9× 10−15

5 7.3× 10−14 7.1× 10−14 2.1× 10−13 1.0× 10−12 1.4× 10−13 2.3× 10−14

6 1.3× 10−4 9.1× 10−7 1.1× 10−7 2.4× 10−2 7.3× 10−7 1.5× 10−6

7 3.3× 108 2.1× 109 8.8× 107 8.0× 108 3.6× 108 2.4× 108

8 1.5× 10−4 4.1× 10−3 4.2× 10−5 2.4× 10−4 1.3× 10−5 2.3× 10−4

9 8.2× 10−8 8.2× 10−8 5.5× 10−7 1.3× 10−4 1.9× 10−6 4.6× 10−10

10 1.8× 10−15 1.0× 100 1.3× 10−14 7.1× 10−15 6.8× 10−15 1.8× 10−15

11 2.5× 10−9 6.0× 10−15 1.4× 10−15 1.1× 10−8 5.4× 10−15 2.9× 10−15

12 2.0× 1016 5.9× 1018 1.5× 1016 1.2× 1016 6.8× 1016 3.4× 1016

13 2.9× 10−4 2.4× 10−4 9.0× 10−9 1.7× 10−2 3.3× 10−4 5.4× 10−11

14 3.8× 10−15 1.7× 10−15 2.5× 10−15 2.2× 10−7 3.3× 100 3.8× 10−13

15 9.7× 10−14 1.1× 10−13 2.5× 10−13 1.8× 10−12 3.2× 10−13 1.9× 10−11

16 7.3× 10−15 2.8× 10−13 1.2× 10−14 2.3× 10−14 1.2× 10−14 1.6× 10−13

17 2.1× 103 1.8× 103 2.3× 103 2.6× 103 1.9× 103 6.7× 101

18 7.1× 10−16 7.1× 10−16 2.1× 10−12 9.6× 10−12 2.4× 10−12 1.1× 10−8

19 8.8× 10−13 1.1× 10−12 5.7× 10−12 1.6× 10−11 5.1× 10−12 4.3× 10−9

Table 3: Relative Errors for the compared MATLAB functions. For Example 17: |x1,n − 1|

alg1 alg1a are care aresolv osmare

1 0 2.1× 10−16 7.0× 10−16 2.4× 10−15 2.0× 10−15 7.4× 10−17

2 4.7× 10−15 1.6× 10−15 1.4× 10−15 4.5× 10−15 5.5× 10−15 1.3× 10−15

7 8.3× 10−5 5.3× 10−4 2.2× 10−5 2.0× 10−4 8.9× 10−5 5.9× 10−5

9 4.1× 10−14 4.1× 10−14 1.2× 10−14 2.5× 10−11 3.8× 10−12 1.6× 10−16

10 1.6× 10−16 7.2× 10−2 7.5× 10−16 6.1× 10−11 5.2× 10−16 1.2× 10−11

11 2.1× 10−8 2.1× 10−8 1.6× 10−8 2.7× 10−8 1.2× 10−8 6.3× 10−16

12 5.7× 10−4 1.2× 100 7.0× 10−4 3.8× 10−4 1.9× 10−3 9.5× 10−4

17 8.3× 10−7 6.6× 10−7 1.1× 10−6 1.1× 10−6 1.1× 10−6 6.6× 10−9
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6 Conclusion

We have presented a new method for the computation of Lagrangian invariant subspaces
of Hamiltonian matrices. By embedding the matrix into a specially structured Hamiltonian
matrix of double size, we can compute the desired subspace via a method that is strongly
backward stable for a related double sized Hamiltonian problem.

The complexity of the method is less than that of the standard QR-algorithm with eigen-
value reordering. It works very well for problems in H∗2n and it can in principle also be
applied to problems with eigenvalues on the imaginary axis, but currently it is not clear
which subspace one should compute then.

In this paper we have restricted ourselves to real Hamiltonian matrices. The reason is that
the symplectic URV decomposition does not extend in an easy way to complex Hamiltonian
with nontrivial imaginary part. The ideas of this paper can, however, be modified to work
for complex Hamiltonian matrices. These results will be presented elsewhere.
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A Appendix

In this Appendix we give an alternative method for the computation of U3 in Step 2 of
Algorithm 1. This method makes use of the special structure of Hb and Ht. The symplectic
URV decomposition yields block-matrices Ht = [Ht

ij ]s×s,Hb = [Hb
ij ]s×s ∈ Rn×n partitioned

analogously, where Ht
ii, H

b
ii are ni × ni, i = 1, 2, . . . , s. We want to transform

[
0 Hb

Ht 0

]
to quasi upper triangular form using a finite sequence of orthogonal transformations. As in
the common reordering of the real Schur form using the Bartels-Stewart algorithm, e.g., [15],
we need to distinguish different cases depending on the size (1× 1 or 2× 2) of the blocks we
treat. We have to solve the following elementary problems:

1. For nonnegative scalars K,L or 2×2 matrices K,L such that KL has a pair of complex
conjugate eigenvalues find an orthogonal matrix Z such that

ZT
[

0 L
K 0

]
Z =:

[
T1 T3

0 −T2

]
, (52)

with λ(T1) = λ(T2) and λ−(T1) = ∅.
In the 1× 1 case let

Z =

[
c s
−s c

]
,

with

c :=

√
L

L+K
, s := −

√
K

L+K
,
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then

ZT
[

0 L
K 0

]
Z =

[ √
KL L−K
0 −

√
KL

]
=:

[
T1 T3

0 −T2

]
.

For the 2 × 2 case we first determine the eigenvalues with positive real parts of the

matrix

[
0 L
K 0

]
. They are a± ib, a > 0, with

a :=
1
2

√
2
√

det(KL) + trace(KL), b :=
1
2

√
2
√

det(KL)− trace(KL).

We then apply the QR algorithm with double shifts a ± ib (e.g., [15]) to

[
0 L
K 0

]
.

Since the matrix size is 4 × 4 and since the shifts are very close to the accurate ones,
usually one or two iterations are sufficient to get (52).

2. For a given matrix

[
T1 0
T3 −T2

]
, where T1 and T2 are either 1× 1 or 2× 2, determine

an orthogonal matrix Z such that

ZT
[
T1 0
T3 −T2

]
Z =:

[
T̃1 T̃3

0 −T̃2

]
, (53)

where λ(T1) = λ(T̃1) and λ(T2) = λ(T̃2). If both T1, T2 are 1× 1, then we form

Z =

[
c s
−s c

]
,

with
c :=

T1 + T2√
T 2

3 + (T1 + T2)2
, s := − T3√

T 2
3 + (T1 + T2)2

.

Then

ZT
[
T1 0
T3 −T2

]
Z =

[
T1 −T3

0 −T2

]
.

If at least one of T1 or T2 is 2 × 2, then we obtain (53) by applying the QR algorithm
with the eigenvalue(s) of −T2 as the shift(s). Again one or two iterations are usually
sufficient.

Algorithm 2

Input: Ht,Hb ∈ Rn×n with Ht upper triangular and Hb quasi upper triangular.

Output: U3 ∈ U2n, ∆ as in (34), and Π3 as in (36).

% Initialize U3.

Set U = I2n :=

[
U11 U12

U21 U22

]
.
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FOR i = 1, . . . , s

Set C(i : s) = 0, D(i : s) = Hb(i, i : s), Hb(i, i : s) = 0.
% Store ∆ in Hb.

FOR j = i, i− 1, . . . , 1

IF j = i THEN
% Annihilate Ht(j, j).

Take Ht(j, j), D(i) as K, L of (52). Determine the orthogonal matrix

Z :=

[
Z11 Z12

Z21 Z22

]
,

such that

ZT
[

0 L
K 0

]
Z =:

[
T1 T3

0 −T2

]
,

ELSE
% Annihilate Ht(j, i).

Take Ht(j, i), C(i), Hb(j, j) as T3, T1, T2 in (53). Determine the orthogonal
matrix

Z :=

[
Z11 Z12

Z21 Z22

]
such that

ZT
[
T1 0
T3 −T2

]
Z =:

[
T1 T3

0 −T2

]
.

END IF

Set

C(i) := T1, D(j) := T3,

Ht(j, i) := 0, Hb(j, j) := T2,

C(i+ 1 : s) := ZT11C(i+ 1 : s) + ZT21Ht(j, i+ 1 : s),
Ht(j, i+ 1 : s) := ZT12C(i+ 1 : s) + ZT22Ht(j, i+ 1 : s),
D(j + 1 : s) := ZT11D(j + 1 : s)− ZT21Hb(j, j + 1 : s),

Hb(j, j + 1 : s) := −ZT12D(j + 1 : s) + ZT22Hb(j, j + 1 : s),
Ht(1 : j − 1, i) := Ht(1 : j − 1, i)Z11 −Hb(1 : j − 1, j)Z21,

Hb(1 : j − 1, j) := −Ht(1 : j − 1, i)Z12 +Hb(1 : j − 1, j)Z22;
U11(j : i, i) := U11(j : i, i)Z11 + U12(j : i, j)Z21,

U12(j : i, j) := U11(j : i, i)Z12 + U12(j : i, j)Z22,

U21(j : i, i) := U21(j : i, i)Z11 + U22(j : i, j)Z21,

U22(j : i, j) := U21(j : i, i)Z12 + U22(j : i, j)Z22.

END FOR j
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END FOR i

% Form Π3 as in (36) and store it in Hr.

Hr := UT22HrU12, Hr := Hr +HT
r .

END
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