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Abstract

We discuss the numerical solution of linear quadratic optimal control problems and
H∞ control problems. A standard approach for these problems leads to solving algebraic
Riccati equations or to the computation of deflating subspaces of structured matrix pen-
cils. New structure preserving methods for these problems have been developed recently.
These are faster than the conventional used methods and give results of full possible
accuracy. The new methods can also be used for Riccati equations with an associated
Hamiltonian matrix that has eigenvalues on the imaginary axis.

Keywords eigenvalue problem, deflating subspace, algebraic Riccati equation, Hamiltonian
matrix, skew-Hamiltonian/Hamiltonian pencil
AMS subject classification. 65F15, 93B40, 93B36, 93C60.

1 Introduction and preliminaries

The numerical solution of linear quadratic control problems and H∞ control problems is of
great importance in the design of controllers, in particular when robust controllers are desired,
[19, 27, 38, 33, 40].

The continuous time linear quadratic control problem has the following form. Minimize

S(x, u) =
∫ ∞
t0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt (1)

subject to the differential-algebraic system

Eẋ = Ax+Bu, x(t0) = x0. (2)
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Application of the maximum principle [39, 33] leads to the two-point boundary value problem
of Euler-Lagrange equations

Ec

 ẋ
µ̇
u̇

 = Ac

 x
µ
u

 , x(t0) = x0, lim
t→∞

ETµ(t) = 0, (3)

with the matrix pencil

αEc − βAc := α

 E 0 0
0 −ET 0
0 0 0

− β
 A 0 B

Q AT S
ST BT R

 . (4)

The optimal solution x(t) is required to be stable. If both E and R are nonsingular, then
with η := −ETµ, (3) reduces to the two-point boundary value problem[

ẋ
η̇

]
= H

[
x
η

]
, x(t0) = x0, lim

t→∞
η(t) = 0 (5)

with the Hamiltonian matrix

H =

[
F G
H −F T

]
:=

[
E−1(A−BR−1S) E−1BR−1BTE−T

Q− SR−1ST −(E−1(A−BR−1S))T

]
. (6)

The solution of the boundary value problem can be obtained in many different ways. For
example, let Y be the stabilizing solution of the associated algebraic Riccati equation

0 = H + Y F + F TY − Y GY. (7)

Multiplying (6) from the left by [
I 0
Y I

]
and changing the variables to [

x
ξ

]
=

[
I 0
Y I

] [
x
η

]

one obtains the decoupled Hamiltonian system[
ẋ

ξ̇

]
=

[
F −GY G

0 −F T + Y G

] [
x
ξ

]
, x(t0) = x0, lim

t→∞
ξ(t) = 0, (8)

from which the solution [xT , ξT ]T may be obtained by one reverse time and one forward time
integration.

If E is singular and R is nonsingular then the system (3) represents a differential-algebraic
system. Using u(t) = −R−1(STx(t) +BTµ(t)), system (3) reduces to

S
[
ẋ
µ̇

]
= H

[
x
µ

]
, x(t0) = x0, lim

t→∞
ETµ(t) = 0, (9)
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with the reduced pencil

αS − βH := α

[
E 0
0 −ET

]
− β

[
A−BR−1S −BR−1BT

Q− SR−1ST (A−BR−1S)T

]
(10)

In this case it is possible to write down a generalized Riccati equation but the relationship
with solutions of the optimal control problem is lost or hidden. See [5, 25, 26, 33] for details.

If R is singular and E is nonsingular then the situation becomes more complicated. Al-
though the boundary value problem remains well defined, the Riccati equation does not. The
analysis of this case has been recently studied in [36, 24, 23] and numerical methods have
been introduced in [4, 35, 41].

The case in which both E and R are singular has not been analyzed in full generality yet.
Note that the reduction to the form (5) may be still very ill-conditioned even if E or R

are invertible. Hence it may happen that the transformed coefficient matrices in (6) are so
corrupted by rounding errors that the solution obtained from them is of limited value. The
same may happen if the solution is computed via the Riccati equation (7).

Hamiltonian matrices and Riccati equations of a similar structure occur in the H∞ con-
trol problem. See, e.g., the recent monographs [21, 43]. The extended Hamiltonian pencils
typically take the form

αEh − βAh := α

 E 0 0
0 −ET 0
0 0 0

− β
 A γ−2B1B

T
1 B2

CTC AT 0
0 BT

2 I

 . (11)

In particular if E is nonsingular, then the reduced order system has the form (5). The main
difference though is that in the linear quadratic control problem the matrix G is positive
semidefinite, while in the H∞ case it may be indefinite.

The Euler-Lagrange and Riccati equations, their solvability and their numerical solution
has been the subject of numerous publications in recent years. See, e.g., [33, 11, 27, 40].

It was observed in [41] that it suffices to study the deflating subspaces of the pencil
(Ec,Ac) in (4) to solve the control problems. Suppose (Ec,Ac) has an n-dimensional deflating
subspace associated with eigenvalues in the left half plane. Let this subspace be spanned by
the columns of a matrix U , partitioned analogous to the pencil as

U =

 U1

U2

U3

 .
Then, if U1 is invertible, the optimal control is a linear feedback of the form u(t) = U3U

−1
1 x(t)

and the solution of the associated Riccati equation is Y = U2U
−1
1 E−1. See [33] for details.

Unfortunately, if E is singular, then such an n-dimensional deflating subspace in gen-
eral does not exist. Under certain restrictions [33] we can complete the subspace to an
n-dimensional subspace by adding appropriate eigenvectors and principal vectors associated
with the eigenvalue ∞.

A feature of the pencils associated with the two-point boundary value problems is that
they have algebraic structures which reflect the model and lead to a certain symmetry in the
spectrum. Roundoff errors can destroy this symmetry leading to physically meaningless results
unless the numerical method also preserves the algebraic structure of the pencil. Preserving
algebraic structure also leads to more efficient as well as more accurate numerical methods.
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Definition 1 Let J :=

[
0 In
−In 0

]
, where In is the n× n identity matrix.

a) A matrix H ∈ R2n×2n is Hamiltonian if (HJ)T = HJ . The Lie Algebra of Hamiltonian
matrices in R2n×2n is denoted by H2n.

b) A matrix H ∈ R2n×2n is skew-Hamiltonian if (HJ)T = −HJ . The Jordan algebra of
skew-Hamiltonian matrices in R2n×2n is denoted by SH2n.

c) A matrix S ∈ Rn×n is symplectic if SJST = J . The Lie group of symplectic matrices
in Rn×n is denoted by S2n.

d) A matrix Ud ∈ R2n×2n is orthogonal symplectic if UdJUTd = J and UdUTd = I2n. The
compact Lie group of orthogonal symplectic matrices in Rn×n is denoted by US2n.

The reduced Euler-Lagrange equations (5) involve a Hamiltonian matrix and (9) involves
a pencil with one skew-Hamiltonian and one Hamiltonian matrix.

The pencil (4) does not have this structure but many of the properties of Hamiltonian
matrices carry over. We will discuss this in the next section.

Let us close the introductory remarks with some historical background on the numeri-
cal solution of the eigenvalue problems for matrices and pencils involving the structures in
Definition 1.

The eigenproblem for Hamiltonian matrices has been a topic of research, since the land-
mark papers of Laub [28] and Paige/Van Loan [37]. While the Schur method proposed in [28]
ignores the Hamiltonian structure and uses the standard QR algorithm to obtain the desired
deflating subspace, the results in [37] suggest how to use the Hamiltonian structure. In [41] it
was then discussed how to effectively use a staircase algorithm to treat the extended matrix
pencil (4). But despite these important results and many other contributions, see [14, 29, 33]
and the references therein, a completely satisfactory method is still an open problem. Such
a method would be a numerically backward stable method, that has a complexity of O(n3)
and at the same time preserves the Hamiltonian structure.

There are two main reasons why this problem resisted solution. First of all one would need
a triangular-like form under orthogonal symplectic similarity transformations from which the
desired deflating subspaces can be read off. Such a Hamiltonian Schur form was first suggested
in [37] but it is clear that not every Hamiltonian matrix has such a condensed form. The
exact characterization when such a form exists was first proposed in [30] and finally proved
in [34]. We will give a brief overview of these results in Section 3. The second difficulty arises
from the fact that even if a Hamiltonian Schur form exists, it is not clear how to construct
a method with the desired features to compute it numerically. It has been shown in [1] that
a modification of standard QR-like methods to solve this problem is (except for special cases
[15, 16]), in general hopeless, due to the missing reduction to a Hessenberg-like form. For this
reason other methods like the multishift-method of [2] or the structured method of [9] were
developed that do not follow the direct line of a standard QR-like method. Although these
methods still do not fulfill all the requirements to a full extend, they come quite close to the
optimal methods. We will review the method of [9] and indicate how it can be extended to
skew-Hamiltonian/Hamiltonian pencils.

The outline of the paper is as follows. In Section 2 we describe a way to embed the
extended Hamiltonian pencils into pencils with a skew-Hamiltonian/Hamiltonian structure
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and how this embedding can be interpreted from a system theoretic point of view. In Section 3
we briefly review the results on the existence of Hamiltonian Schur forms and in Section 4 we
present numerical methods for the computation of the eigenvalues of Hamiltonian matrices
as well as skew-Hamiltonian/Hamiltonian pencils. In Section 5 we then show how we can
determine the deflating subspaces that we are interested in via structure preserving methods.
and we discuss how the presented results can be extended to the complex case in Section 6.

2 Embedding of extended pencils

In this section we will show how we to endow the extended Hamiltonian pencil (4) with the
structure of the pencil (10) by embedding the Euler-Lagrange equations (3) into a larger
system. Introducing B̃ ∈ Rm×n, R̃ ∈ Rm×m, and an additional control vector v ∈ Rm, we
consider the extended dynamical system

Eẋ = Ax+Bu+ B̃v, x(t0) = x0. (12)

That is, the new control vector is given by

[
u
v

]
. We also introduce a new cost functional

Se(x, u) =
∫ ∞
t0

 x(t)
u(t)
v(t)


T  Q S 0

ST R 0
0 0 R̃


 x(t)
u(t)
v(t)

 dt. (13)

For this embedded system the Euler-Lagrange equations written in the appropriate order take
the form

Ee


ẋ
u̇
µ̇
v̇

 = Ae


x
u
µ
v

 , x(t0) = x0, lim
t→∞

ETµ(t) = 0, (14)

with the extended skew-Hamiltonian/ Hamiltonian pencil

αEe − βAe := α


E 0 0 0
0 0 0 0
0 0 ET 0
0 0 0 0

− β


A B 0 B̃

0 0 B̃T R̃

−Q −S −AT 0
−ST −R −BT 0

 . (15)

In this embedding there is a lot of freedom. In principle we can choose R̃ and B̃ arbitrarily,
but it seems appropriate to follow certain general rules. First of all we should choose them
in such a way that the resulting pencil is a regular pencil, so that the associated two-point
boundary value problem of differential-algebraic equations (14) has a unique solution for all
consistently chosen initial values x0, see [26]. If the original extended Hamiltonian pencil (4)
has this property then this is easily achieved. Note that this regularity property can always
be guaranteed via an appropriate preprocessing of the system, see [17, 26, 33]. Secondly, we
should ensure that the embedded pencil has a structured Schur-like form as it was introduced
for skew-Hamiltonian/Hamiltonian pencils in [32, 31]. Furthermore the problem of computing
the desired invariant subspace should not become more ill-conditioned than that for the pencil
(4). For a detailed discussion of the choice of B̃, R̃ see [7].
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If we obey these principles then the embedding just means that we have added some
eigenvalues at infinity to the system and increased the associated deflating subspace.

There is a certain philosophy behind this embedding trick. First of all we can view this
extension as the converse operation to the reduction of the extended problem (3) to the
problem (9). Furthermore if we consider a behavior approach, i.e., if we do not distinguish
state and input variables, then the same global structure occurs for singular E of the form[
Ẽ 0
0 0

]
, if in the reduced system (10) we partition x and µ according to the partitioning

in E. In view of these observations, the embedding seems a natural approach from a system
theoretic point view. It allows better use of structure, and it avoids the inversion of matrices,
which may lead to large numerical errors.

3 Hamiltonian Schur forms

In this section we briefly review the results on the existence of structured Schur forms for
Hamiltonian matrices and skew-Hamiltonian/Hamiltonian pencils.

To simplify notation we use eigenvalue for eigenvalues of matrices and also for pairs
(α, β) 6= (0, 0) for which the determinant of a matrix pencil αE − βA vanishes. These pairs
are not unique. If β 6= 0 then we identify (α, β) with (αβ , 1) or λ = α

β . Pairs (α, 0) with α 6= 0
are called infinite eigenvalues.

A quasi-triangular matrix A is triangular with 1× 1 or 2× 2 blocks on the diagonal. We
call a real matrix Hamiltonian quasi-triangular if it is Hamiltonian and has the form[

F G
0 −F T

]
,

where F is quasi-triangular in real Schur form [20]. Similarly we call a real matrix skew-
Hamiltonian quasi-triangular if it is skew-Hamiltonian and has the form[

F G
0 F T

]
,

where F is quasi-triangular. If a Hamiltonian (skew-Hamiltonian) matrix H can be trans-
formed into Hamiltonian quasi-triangular from by a similarity transformation with a matrix
U ∈ US2n, then we say that UTHU has Hamiltonian Schur form (skew-Hamiltonian Schur
form).

For Hamiltonian matrices that have no purely imaginary eigenvalues the existence of a
Hamiltonian Schur form was proved in [37]. The general result was suggested in [30] and a
proof based on a structured Hamiltonian Jordan form was recently given in [34]. Since the
general result is quite technical, we only give here parts of the result proved in [34].

Theorem 2 [34]
Let H be a real Hamiltonian matrix, let iα1, . . . , iαν be its pairwise distinct nonzero purely

imaginary eigenvalues and let Uk, k = 1, . . . , ν, be the associated invariant subspaces. Then
the following are equivalent.

i) There exists a real symplectic matrix S such that S−1HS is real Hamiltonian quasi-
triangular.

6



ii) There exists a real orthogonal symplectic matrix U such that UTHU is real Hamiltonian
quasi-triangular.

iii) UHk JUk is congruent to J for all k = 1, . . . , ν, where J is always of the appropriate
dimension.

This theorem gives necessary and sufficient conditions for the existence of a real Hamilto-
nian Schur form under orthogonal symplectic similarity transformations. On the other hand,
there are Hamiltonian matrices for which these conditions do not hold, but nevertheless there
exists a nonsymplectic similarity transformation to Hamiltonian quasi-triangular form. A class
of such matrices are the matrices J of a size that is divisible by 4. Orthogonal symplectic sim-
ilarity transformations do not change these matrices, hence they have no Hamiltonian quasi-
triangular form under symplectic similarity transformations. But such matrices are similar
to a Hamiltonian quasi triangular form under nonsymplectic transformations. As an example

consider J ∈ R4×4. Set V = [e1, e3, e2, e4], then V HJV = diag(

[
0 1
−1 0

]
,

[
0 1
−1 0

]
) is

Hamiltonian triangular.
Necessary and sufficient conditions for the existence of a Hamiltonian Schur form under

nonsymplectic similarity transformations are given in the following theorem.

Theorem 3 [34] A real Hamiltonian matrix H is similar to a real Hamiltonian triangular
form if and only if the algebraic multiplicities of all purely imaginary eigenvalues with positive
imaginary parts are even.

A similar theorem applies to skew-Hamiltonian/Hamiltonian pencils.

Theorem 4 [32, 31] Let αS − βH be a regular skew-Hamiltonian/ Hamiltonian pencil, let
iα1, . . . , iαν be its pairwise distinct nonzero purely imaginary eigenvalues with algebraic multi-
plicities p1, . . . , pν and let Uk, k = 1, . . . , ν, be the associated deflating subspaces. Furthermore
let p∞ be the algebraic multiplicity of the eigenvalue infinity and let U∞ be the associated de-
flating subspace. Then the following are equivalent.

i) There exists a nonsingular matrix P, such that

JPTJ(αS − βH)P = α

[
S11 S12

0 ST11

]
− β

[
H11 H12

0 −HT
11

]
(16)

where S11 is upper triangular and H11 is quasi upper triangular.

ii) There exists a real orthogonal matrix U such that JUTJ(αS −βH)U has the form (16).

iii) UHk JSUk is congruent to J of appropriate dimension for all k = 1, . . . , ν. Furthermore
if p∞ 6= 0 then UT∞JHU∞ is congruent to iJ of appropriate dimension.

Note that a necessary condition for iii) to hold is that all purely imaginary eigenvalue of H
have even algebraic multiplicities. Similar results also exist for complex matrices and pencils,
see [34] and [32, 31]. The results also demonstrate that whenever a structured triangular
form exists, then it also exists under orthogonal transformations. This fact gives hope that
these forms and therefore also the eigenvalues and deflating subspaces can be computed with
structure preserving numerically stable methods. We discuss such methods for the compu-
tation of eigenvalues of Hamiltonian matrices and skew-Hamiltonian/Hamiltonian pencils in
the remaining sections.
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4 Eigenvalue computation

We have seen that (possibly by an appropriate embedding) the solution of our robust control
problems leads to the problem of computing eigenvalues and deflating subspaces for Hamil-
tonian matrices or skew-Hamiltonian/Hamiltonian pencils. It is well-known that if H is a
Hamiltonian matrix, H2 is a skew-Hamiltonian matrix. It is easier to compute the eigenval-
ues of a real skew-Hamiltonian matrix than those of a Hamiltonian matrix [42]. This suggests
computing the eigenvalues of H by taking square roots of the eigenvalues of H2. This method
was proposed in [42]. Unfortunately, in a worst case scenario one might obtain only half of
the possible accuracy in the computed eigenvalues [15, 42]. An example demonstrating this
was given in [42]. A way out of this dilemma was recently presented in [10].

Theorem 5 [10] Let H ∈ H2n. Then there exist Q1, Q2 ∈ US2n, such that

QT1HQ2 =

[
H11 H12

0 H22

]
, (17)

with H11 upper triangular and HT
22 quasi upper triangular. Furthermore the eigenvalues of H

are the square roots of the eigenvalues of −H11H
T
22.

Note that the resulting matrix in (17) is neither Hamiltonian nor similar toH, but a simple cal-
culation shows that both QT1H2Q1 and QT2H2Q2 are real skew-Hamiltonian quasi-triangular.

For skew-Hamiltonian/Hamiltonian pencils αS − βH of the form (10) or (15), we can
construct similar methods. Roughly, the idea is to factor S = S1S2 with S1 = JST2 JT (e.g.,

for (10), S1 =

[
I 0
0 ET

]
) and to apply the previous procedure formally to the Hamiltonian

matrix
S−1

1 HS
−1
2

without ever forming the product or the inverses.

Theorem 6 [7] If the skew-Hamiltonian/Hamiltonian pencil

αS1S2 − βH := α

[
I 0
0 ET

] [
E 0
0 I

]
− β

[
F G
H −F T

]
(18)

is regular, then there exist orthogonal matrices Q3, Q4 and orthogonal symplectic matrices
Q1, Q2, such that

QT3 S1Q1 =

[
S11 S12

0 S22

]
,

QT2 S2Q4 =

[
T11 T12

0 T22

]
, (19)

QT3HQ4 =

[
H11 H12

0 H22

]
,

where S11, T11,H11, S
T
22, T

T
22 are upper triangular and HT

22 is quasi upper triangular. Further-
more, the finite eigenvalues of αS − βH are
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1. the square roots of the finite eigenvalues of αS11S
T
22 + βH11T

−1
11 T

−T
22 HT

22;

2. or, equivalently, the eigenvalues of α

[
T T22T11 0

0 S11S
T
22

]
− β

[
0 −HT

22

H11 0

]
.

The proof of this result as well as the proof of Theorem 5 amount to algorithms for the
computation of (17) and (19). The reduction procedures are based on a finite elimination
procedure that brings all of the diagonal blocks except H22 to triangular form. The block
H22 reduces to lower Hessenberg form. This initial reduction is then followed by the periodic
QR-algorithm or QZ-algorithm [12, 22] applied to −H11H

T
22 or

−S−1
11 H11T

−1
11 T

−T
22 HT

22S
−T
22 , (20)

respectively.
The periodic QR-algorithm applied to −H11H

T
22 yields real orthogonal transformation

matrices U, V ∈ Rn×n such that UTH11V is upper triangular and (UTH22V )T is quasi up-
per triangular. Analogously the periodic QZ-algorithm applied to (20) yields real orthogo-
nal transformation matrices P,Q,U, V, Y, Z ∈ Rn×n, such that P TS11Q, P TH11U , V TT11U ,
W TT T22V , QTST22Y are upper triangular, and W THT

22Y is quasi upper triangular. The 2× 2
blocks are associated only with nonsingular blocks in S11, S22, T11, T22.

After these forms have been computed, we can compute the eigenvalues of H or αS −βH,
respectively by solving 1 × 1 or 2 × 2 eigenvalue problems and taking square roots. For
algorithmic details and a detailed error analysis see [7, 10].

To demonstrate the efficiency of this approach we present numerical examples for the
Hamiltonian matrix case. The numerical tests were performed using IEEE double precision
arithmetic with machine precision ε ≈ 2.2204 × 10−16 on a HP Model 712/60 workstation
with operating system HP-UX 9.0. We used the HP-UX Fortran 77 compiler invoked by f77.
The programs were compiled using standard optimization.

We compared the following methods:

• URVPSD, the method based on Theorem 5 as suggested in [10],

• SQRED, Van Loan’s square reduced method [42] as implemented in [6],

• LAPACK, the nonsymmetric eigenproblem solver DGEEVX from LAPACK [3].

All subroutines use the BLAS and LAPACK [3] compiled from Fortran source with f77 -O.
The implementations of URVPSD and SQRED are not block-oriented.

Example 1 [42, Example 2] Let F = diag(1, 10−2, 10−4, 10−6, 10−8 ), and let H be the
Hamiltonian matrix obtained by

H = UT
[
F 0
0 −F T

]
U,

with U ∈ US2n randomly generated by five symplectic rotations and five reflectors. Thus,

σ(H) = {±1,±10−2,±10−4,±10−6,±10−8}.

Table 1 shows the absolute errors in the eigenvalue approximations computed by the three
methods.
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λ URVPSD SQRED LAPACK

1 0 0 7.8× 10−16

10−2 5.5× 10−16 5.5× 10−16 5.0× 10−17

10−4 1.6× 10−18 1.6× 10−14 2.6× 10−18

10−6 1.0× 10−18 1.5× 10−11 8.4× 10−18

10−8 3.1× 10−17 2.2× 10−9 4.7× 10−17

Table 1: Example 1, absolute errors |λ− λ̃|.

Table 1 demonstrates that SQRED calculates large magnitude eigenvalues to full precision
(apart from the effects of eigenvalue ill-conditioning) but that small magnitude eigenvalues
to only half precision. LAPACK and URVPSD [10] calculate all eigenvalues to full precision.

Example 2 We also tested the three methods for randomly generated Hamiltonian matrices
with entries distributed uniformly in the interval [−1, 1 ]. Since the eigenvalue distribution for
these examples usually behaves “nicely”, the eigenvalues computed by either of the methods
are computed to almost the same accuracy. We give the CPU times for 2n× 2n examples for
several sizes of n. For each size of n, we computed 100 examples. The values given in Table 2
are the mean values of the CPU times measured on a HP Model 712/60 work station.

n URVPSD SQRED LAPACK

25 0.092 0.061 0.142

50 0.56 0.34 0.77

75 1.72 1.03 2.36

100 3.95 2.41 5.30

125 7.36 4.66 10.07

150 12.33 7.99 17.36

175 19.52 12.53 27.79

200 28.61 18.51 41.44

Table 2: Example 2, CPU times in seconds.

Table 2 shows that URVPSD and SQRED are much faster than the standard QR algo-
rithm. The speed-ups are roughly proportional to the flop counts. There is a little overhead
which causes both methods to be slightly slower than to be expected from the flop counts,
though. This is due to the fact that these methods are more complex as far as index handling,
memory access, and subroutine calls are concerned.

We have seen that it is possible to use the algebraic structure of Hamiltonian matrices and
skew-Hamiltonian/Hamiltonian pencils effectively to speed up the computation of eigenvalues
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while still achieving full possible accuracy. Unfortunately this new approach is not perfect.
We would like to have the Hamiltonian Schur form, since it would give us the eigenvalues and
also the deflating subspaces. Currently the only other candidate for an optimal algorithm,
the multishift algorithm of [2], sometimes has convergence problems.

For the computation of the deflating subspaces we now use another embedding procedure.
These ideas are presented in the next section.

5 Invariant subspace computation for Hamiltonian matrices

In this section we discuss structure preserving methods to compute the invariant subspaces of
Hamiltonian matrices. This approach can also be applied to general matrices, so we present
it in general and then show how it specializes for Hamiltonian matrices. The description of
the treatment of skew-Hamiltonian/Hamiltonian pencils is similar, but technically involved.
For this reason we present here only the method for the Hamiltonian matrix case and refer
the reader to the forthcoming paper [7] for the pencil case.

Let λ−(A), λ+(A), λ0(A) denote the spectra in the open left half plane, in the open right
half plane and on the imaginary axis, of a matrix A, respectively. The associated invariant
subspaces are denoted by Inv−(A), Inv+(A), Inv0(A), respectively.

Let A ∈ Rn×n. If

B =

[
0 A
A 0

]
, (21)

then

λ(B) = λ(A) ∪ λ(−A),
λ0(B) = λ0(A) ∪ λ0(A), (22)
λ+(B) = λ+(A) ∪ λ+(−A) = λ+(A) ∪ (−λ−(A)) ,
λ−(B) = λ−(A) ∪ λ−(−A) = (−λ+(A)) ∪ λ−(A) = − λ+(B).

Furthermore we obtain the following relations for the invariant subspaces of A and B.

Theorem 7 [9] Let A ∈ Rn×n and B ∈ R2n×2n be related as in (21) and let

[
Q1

Q2

]
∈ R2n×n,

Q1, Q2 ∈ Rn×n, have orthonormal columns, such that

B

[
Q1

Q2

]
=

[
Q1

Q2

]
R, (23)

where
λ+(B) ⊆ λ(R) ⊆ λ+(B) ∪ λ0(B). (24)

Then
range{Q1 +Q2} = Inv+(A) +N1, where N1 ⊆ Inv0(A), (25)

range{Q1 −Q2} = Inv−(A) +N2, where N2 ⊆ Inv0(A). (26)

Moreover, if we partition R as

R =

[
R11 R12

0 R22

]
, where λ(R11) = λ+(B), (27)
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and, accordingly, Q1 =
[
Q11 Q12

]
, Q2 =

[
Q21 Q22

]
, then

B

[
Q11

Q21

]
=

[
Q11

Q21

]
R11, (28)

and there exists an orthogonal matrix Z such that
√

2
2

(Q11 +Q21) =
[

0 P+

]
Z,

√
2

2
(Q11 −Q21) =

[
P− 0

]
Z, (29)

where P+, P− are orthogonal bases of Inv+(A), Inv−(A), respectively.

In the case of a Hamiltonian matrix H =

[
F G
H −F T

]
again consider the block matrix

B =

[
0 H
H 0

]
. (30)

If

P =


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 , (31)

then

B̃ := PTBP =


0 F 0 G
F 0 G 0
0 H 0 −F T
H 0 −F T 0

 (32)

is again Hamiltonian.

Theorem 8 [9] Let H ∈ H2n and let B be as in (30). Then there exists U ∈ U4n, such that

UTBU =

[
R D
0 −RT

]
=: R (33)

is in Hamiltonian quasi-triangular form and λ−(R) = ∅. Moreover, U = PW with W ∈ US4n,
and

R =WT B̃W, (34)

i.e., R is the Hamiltonian quasi-triangular form of the Hamiltonian matrix B̃. Furthermore,
if H has no purely imaginary eigenvalues, then R has only eigenvalues with positive real part.

A constructive proof leading to the following algorithm for this result is given in [9], but the
theorem also follows from Theorems 3 and 2.
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Algorithm 1

Input: A Hamiltonian matrix H ∈ H2n having an n-dimensional Lagrangian invariant sub-
space.

Output: Y ∈ R2n×n, with Y TY = In, such that the columns of Y span a Lagrange invariant
subspace.

Step 1 Apply Algorithm 2 of [10] to H and compute orthogonal symplectic matrices Q1, Q2 ∈
US2n such that

QT1HQ2 =

[
H11 H12

0 H22

]
is the decomposition (17).

Step 2 Determine an orthogonal matrix Q3, such that

QT3

[
0 −HT

22

H11 0

]
Q3 =

 T11 T12 T13

0 T22 T23

0 0 T33


is in real Schur form ordered such that the eigenvalues of T11 have positive real part,
the eigenvalues of T22 have zero real part, and the eigenvalues of T33 have negative real
part.

Step 3 Use the orthogonal symplectic reordering scheme of [16] to determine an orthogonal
symplectic matrix V ∈ US4n such that with

U =

[
U11 U12

U21 U22

]
:=

[
Q1Q3 0

0 Q2Q3

]
V.

At this point we have the Hamiltonian quasi-triangular form

UTBU =


F11 F12 G11 G12

0 F22 G21 G22

0 0 −F T11 0
0 0 −F T12 −F T22

 ,
where F11, F22 are quasi upper triangular with eigenvalues only in the closed right half
plane.

Step 4 Set Ŷ :=
√

2
2 (U11 − U21). Compute Y , an orthogonal basis of range{Ŷ }, using

any numerically stable orthogonalization scheme, for example a rank-revealing QR-
decomposition; see, e.g., [18].

End

The estimated computational cost for this algorithm is given in Table 3.
These numbers compare with 203n3 flops for the computation of the same invariant sub-

space via the standard QR-algorithm as suggested in [28].
Clearly we can obtain the desired solution of the Riccati equation (if it exists) from the

invariant subspace but it is also possible to get it directly from Ŷ . See [9] for details.
A detailed description of this algorithm, an error and perturbation analysis as well as a

comparison of different Riccati solvers are given in [9].
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Step 1 2 3 4 total
flops 103 n3 9 n3 9 n3 21 n3 142 n3

Table 3: Flop counts for Algorithm 1

6 Complex problems

Complex versions of Theorems 3 and 6 are given in [34], and a unitary-symplectic method for
the Hamiltonian eigenproblem is presented in [13]. The algorithms described in the previous
sections do not directly carry over to the case of complex Hamiltonian matrices. Another
simple embedding, however, yields methods for the complex case [8].

Since for every complex Hamiltonian matrixH, iH is complex skew-Hamiltonian, it suffices
to study skew-Hamiltonian matrices. Let N = N1 + iN2 be a complex skew-Hamiltonian

matrix with a real skew-Hamiltonian matrix N1 =

[
F1 D1

G1 F T1

]
and a real Hamiltonian

matrix N2 =

[
F2 D2

G2 −F T2

]
. Then with the unitary matrix

Q2n :=
√

2
2

[
I2n iI2n

I2n −iI2n

]
, (35)

and the permutation matrix P of (31) we obtain the real skew-Hamiltonian matrix

N := PHQH2n diag(N,N)Q2nP =


F1 −F2 D1 −D2

F2 F1 D2 D1

G1 −G2 F T1 F T2
G2 G1 −F T2 F T1


=:

[
F D
G FT

]
. (36)

for which we can easily, see [42], obtain the real skew-Hamiltonian quasi-triangular form

W TNW =

[
R T
0 RT

]
=: R, (37)

where R ∈ R2n×2n is quasi upper triangular, T = −T T , and W ∈ US4n is real orthogonal
symplectic. As in Section 5, we can then determine the desired subspaces. See [8] for details.

7 Conclusion

We have given a survey on recent results concerning the existence of Schur like forms for
Hamiltonian matrices and skew-Hamiltonian/Hamiltonian pencils. Furthermore we have dis-
cussed structure preserving numerical methods for the computation of invariant and deflating
subspaces for these matrices and pencils. The methods can also be used for problems with
purely imaginary eigenvalues, although there are still some open problems to be settled. The
presented ideas allow a universal treatment of linear quadratic and H∞ problems and analo-
gous results and methods are also available for discrete-time problems.
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